

The ATLAS Simulation

Jochen Meyer On Behalf Of The ATLAS Simulation Group

CÉRN

06 October 2016

SCCTW'2016

South-Caucasus Computing and Technology Workshop

Introduction The ATLAS Experiment At The LHC

- Larde Hadron Collider
 - circular tunnel of 27 km diameter below Switzerland and France
 - machine to accelerate and collide particles (mainly protons, but also lead cores)
- A Toroidal LHC ApparatuS
 - one of two multi-purpose experiments at the LHC
 - detection of charged particles, photons and hadrons
 - measurement of particle trajectories and energy deposits

- Why The Experiment?
 - measurement of natural constants like the mass of the W boson
 - probing of the well-established Standard Model of particle physics
 - test for predictions made by extensions and other theories

- Why Its Simulation?
 - simulation helps to understand the detector and to separate experimental effects from actual new physics phenomena
 - some backgrounds cannot be extracted from data and an adequate Monte Carlo prediction is required to study physics models
 - compatibility of simulated new physics and data can be probed and eventually confirmed or rejected with certain degree of confidence

- Geant4 toolkit is used to ...
 - ... track particles through the detector,
 - ... simulate their multiple scattering,
 - ... model their energy loss and
 - ... steer their decay if needed

- Geant4 toolkit is used to ...
 - ... track particles through the detector,
 - ... simulate their multiple scattering,
 - ... model their energy loss and
 - ... steer their decay if needed

- further responsibilities of the ATLAS simulation group are ...
 - ... emulation of detector response during digitization step
 - ... managing some generator code which provides physics input

- Geant4 toolkit is used to ...
 - ... track particles through the detector,
 - ... simulate their multiple scattering,
 - ... model their energy loss and
 - ... steer their decay if needed

- further responsibilities of the ATLAS simulation group are ...
 - ... emulation of detector response during digitization step
 - ... managing some generator code which provides physics input
 - ... injection of backgrounds and underlying events closely to data
 - ... supplying events with "truth" information of all the above

Wall clock time fraction for grid and HPC jobs July 2015 - July 2016

Subdetector CPU fraction for 50 ttbar events MC16 Candidate Release

- real data rates (events per second):
 - ▶ LHC delivers about 600 million evts/sec
 - ATLAS hardware reduces rate to approximately 100.000 evts/sec
 - after pre-selection it is $\mathcal{O}(1000)$ evts/sec
- billions of events are simulated as well, but impossible to provide equal or more Monte Carlo events per physics process
- simulation nevertheless consumes majority of available computing resources (particularly low energetic particles below 10 MeV in calorimeter)

- accuracy of simulation depends on knowledge of interaction between particles and material and therefore also on geometry
- speed at cost of accuracy
 - ▶ full simulation is accurate but slow
 - ► trimmed pre-simulated showers injected for low energetic e[±]/γ after property matching
 - FastCaloSim/Atlfast2 loads parametrized response tuned to data into calorimeter cells
 - FATRAS uses simplified derivatives of detailed geometry to perform fast tracking of particles
- ideally a cocktail of all flavors can be operated depending on requirements

The ATLAS Simulation Workflow Different Flavors Of Simulation

- Integrated Simulation Framework allows to mix different flavors
- recent infrastructure developments give possibility for very specific configurations of Geant4 depending on volume and particle type

The ATLAS Simulation Workflow An Example For Accurate Geometry

Nikhef

- accuracy of ATLAS Muon Spectrometer geometry can be tested by comparing ...
 - ... cavern background hit rates
 - ... contribution of multi-scattering term in alignment studies
- MDT hit rate (= flux \otimes sensitivity) in data is compatible with FLUGG based simulation within a factor of 2
- early Geant4 geometry shows obvious flaws and differs from FLUGG geometry

arbitrarily normalized total energy deposited in average min bias event

• analyzed simulated quantity (not directly observable in data)

effective material density [mass/volume] = $\frac{\text{energy desposition [energy/volume]}}{\text{dose [energy/mass]}}$

- comparison of simplified FLUGG geometry and first update of Geant4 geometry ("old") used for physics simulation
 - feet, shielding support and further small structures not intended to be described in FLUGG

- major updates of Geant4 geometry ("new"):
 - thermal shielding for all toroid coils (red)
 - additional shielding inside end-cap toroid (magenta)
 - re-implementation of end-cap support (brown)
 - calorimeter crates at $|z| \approx 3.5$ m and $r \approx 6.5$ m
 - shielding installed during winter shutdown 2011/2012 (purple)
 - axial force return brackets (yellow) particularly important for scattering
- more updates to come also with help of GTU

- ratio of neutron flux (left) and photon flux (right) simulated with Geant4 divided by corresponding flux simulated with FLUGG
- initial significant overshoot by Geant4 is gone and both simulations are in fairly good agreement
- comparison of hit rate from data will show if reduced flux of Geant4 where FLUGG is higher indeed holds expectations it promises

- encapsulation of event loop to sub-process(es)
 - master appoints events to workers and provides general configuration
 - workers run in parallel and return results when done

Schematic View of ATLAS AthenaMP

- approach is compatible with highperformance computing model based on worker nodes
- new resources besides common grid become available
- first test with Yoda scheduler show good scaling behavior even though there is still room for improvement

- one step further is to parallelize simulation of events themselves
- dedicated functionality is available in Geant4 already
- implementation of basic requirements in ATLAS simulation software almost completed with re-written infrastructure components:
- more exceptional HPC resources (like Cori and Edison supercomputers from NERSC) are now available
- Edison is getting ready for the reservation
- to have a dedicated simulation release is of great advantage in this context

- sensitive detectors
- user actions
- magnetic field and geometry

- embedding of real data
 - simulation of process does not describe reality with required accuracy
 - replacement of portions of actual events similar to desired process with simulated output

- overlay with real data
 - required statistics for desired process cannot or only badly be simulated
 - simulated physics process is overlaid with detector output of real data
- decay of Higgs boson and different amount of background

• similar techniques are common to both approaches, but attitude and underlying problem are different

- simulation is important to understand all details of real data
- Monte Carlo event generation is a technically challenging task taking a lot of computing power
- a balance between speed and accuracy has to be found
- parallelization speeds up and opens the way to new resources
- combinations of real data and simulated data achieve goals simulation alone would not be able to