On calculation of the inverse of multidimensional harmonic oscillator on Schwartz space

D.N.Zarnadze, ICM Georgian Technical University, zarnadzedavid@yahoo.com
D.K.Ugulava, ICM Georgian Technical University, duglasugu@yahoo.com
M.G.Kublashvili, Georgian Technical University, mkublashvili@mail.ru
P.Tsereteli, St. Andrew Patriarchy University, paata.tsereteli@gmail.com

Introduction
Classical harmonic oscillator operator u(t) ——u’(t)+t’u(t), teR, defined on Schwartz nuclear space
S(R) of rapidly decreasing functions on one dimensional Euclidean space R is largely used in quantum mechanics
for white noise analysis [1]. In this report p -dimensional analogy of harmonic oscillator operator

u(t) > —Au+|t|* u(t), defined on Schwartz nuclear spaces of rapidly decreasing functions S(R®) on p
-dimensional Euclidean R P space is considered, where A is Laplace operator and |t [*=t] +17 +---+t. . We

study now the equation contained this operator that is hamed as the Schrodinger equation and connected with
suppersymmetry in quantum mechanics. In particular, suppersymmetry quantum mechanics gives possibility to
find nontrivial solutions of Schrodinger equations.

In the previous paper [2] the least squares method generalized for Frechet spaces by us [3] was used for
approximate calculation of the inverse of classical harmonic oscillator in S(R), i.e. for the approximate solution
of the equation—u’ (t) +t°u(t) = f (t), teR. The convergence and some estimates of convergence of a sequence

of the approximate solutions to the exact solution was also proved.
In this paper generalized the least squares method is used for approximate calculation of the inverse of

Schrodinger equationin S (R"). We give now necessary explanations about Schrodinger equation and calculation
of the inverse of multidimensional harmonic oscillator on Schwartz space.

Schwartz space S (RP) of rapidly decreasing functions on p —dimensional Euclidean space RP as usually
is considered with the sequence of norms

I @llm=5UP, o [t'D @) (), neN.MmeN, [i|=i+---+i,, [i]<n, [jl<m,
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t=(t,--,t,) and multiindices (from nonnegative whole numbers) i=(i,,---,i,), j=(J, " ],)-

The space of all orbits, orbital operator and statement of orbital equation

It is well-known that classical harmonic oscillator operator
Au=—Au+|tPu=f(t) @)
is a symmetric and positive operator in the Hilbert space L (R) . For such operators the Frechet space

D(A*)=nD(A"™") is created the topology of which is generated with the sequence of norms
— /2
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where



| fll= (I| f(x)]> dx)? isanormin L*(R")space.
RP

The norms || ||, are generated by a sequence of inner products
(f yg)n :(f 1g)+(Af ,Ag)-|-..._|_(An*1f ’Anflg)'

The space D(A”) is the space of all orbits of the operator A, because their elements has the form
orb (A, X) :={x, Ax,---, A“‘lx,...} and call as orbit of the operator A at the point  x.

The Frechet space D(A™) was first defined in [4] for any symmetric operator, where D(A™) was whole
symbol and A”, if taken separately, meant nothing. The space D(A™) of all orbits was studied by many

mathematicians for various differential operators. In [5] we have defined the operator A* for all symmetric
operators on the space of all orbits as follows

AZLX, AX, -+, A7, F={AX, A’X, -, A"X, -}, 3)
i.e. A” (orb( A x))=orb( A, Ax). We call A” orbital operator. Due to this notation the space D(A™)acquire
new meaning that differs from the classical. It will be also noted that according the [5], for positive definite operator
A, the orbital operator A™ is topological isomorphism of the Frechet space D(A™) onto itself. As well Orbital

operator A” coincides algebraically to the restriction of the operator A from L>(R?)on D(A*) and coincides
to the restriction of the operator A" from the Frechet space (L*(R"))" on the space D(A”)with considering

topology. This means that the restriction of equation Au=f on S(R")with considering topology coincides to the
orbital operator equation

A”u=f, i.e. A”(orb( A, x))=orb( A, f). 4)
This equation has unique and stable solution. Stability is very important for numerical calculations of practical
problems.  From  this  assertion follows, that classical harmonic  oscillator  operator

u(t) > —u (t)+t’u(t), teR, defined on the Hilbert space L*(R) and the same operator considered on
Schwartz  spaces S(R) are quite different from each-other.  Moreover, the equation

—u (t)+t2ut)=f(t), teR, in the space L*(R) is ill-posed and the  equation
—u'(t)+t?u(t) = f(t) teR,inthespace S(R)iswell-posed. As well this operator on the space L?(R)is'nt
positive definite and the operator on the space S(R) is positive definite. Analogously, the Schrodinger equation
Au =—Au+|t]> u= f(t)in the space L*(RP)is ill-posed and the equation A”U=—Au+|t|> u= f(t)in the
space S(RP)is well-posed. Therefore, the operator considered in Hilbert space will be denoted through A and the
“exsternally same operator” considered in the Frechet space of all orbits D(A™)with considering topology will be
denoted through A*  Namely, the operator in equation AU =-Au+|t|> U= f(t) defined on the space
L*(RP) will be denoted through A and the “exsternally same operator” in equation A”U=—Au+|t|> u= f(t)

considered in the Frechet space of all orbits D(A™)with considering topology will be denoted through A”  We
will call this equation orbital operator equation.

Schwartz space S(RP) is isomorphic to the space D(A™) of all orbits of the operator A and this
isomorphism is obtained by the mapping



S(RP)>x —orb (A, X) ={X, AX,---, A"'X,--} e D(A") .
Therefore, norm (2) has the following form l[Ull,=lorb(Au)l, for NeN
This means that the spaces D(A™) and S(Rr) are isomorphic and these sequences of norms {||-||,} and

{II-1l, -} generates the equivalent topologies. For p =1the equivalence of these norms is proved in [6]. From this

follows also that || x||,=]|orb(A,X) ||, foreach X e S(R¥).

Definition of approximate solution of orbital equation

In this paper the least squares method for approximate calculation of the inverse of Schrodinger equation
A”U=—-Au+|tPu=f(t)in S(RP) is used, i.e. for approximate solution of orbital equation A”u= f the
generalized least squares method is used. The convergence and some estimates of convergence of a sequence of the
approximate solutions to the exact solution was proved.

Let E be a Frechet space with the generated of nondecreasing sequence of norms. For any continuous

operator T :E — E we define the function o; :N — N that characterizes the continuity of T as follows [3]:
or(N)=inf{oeN; sup{||Tx|,; | x|, <L<oo}.

The operator is called tame, if o (n)=n-+1 for some integer | > 0. The operator is called tamely invertible, if
o’ (nN)=n+Ifor some integer 1>0, where o’(n) is the function that characterizes the continuity of inverce

operator T .

For the metrization of the metrizable locally convex spaces E we will use the metric constructed by
D.Zarnadze [6]. This metric essentially is used for coordination of parallel computations. Let {||.||.} be an
nondecreasing sequence of Hilbertian norms on E, then

Ix=yl if Ix—yll,>1,
d(X y)_ 2—n+1, if ||X—y||n32—”+1 and ||X_y||n+122_n+1’ nEN,
O Y f 2" <l x=Yll,a<2"" neN,

®)

is a metric on E with the quasinorm d(X,y)=x—y|. This metric has closed absolutely convex balls
K, ={xeE; d(x,y)<r}=rV, ,where V, ={xeE, | x|,<1} and

rel, =

[1,00[, if n=1,
[277, 272, if n>2

The Minkowski functional g, () of the balls K, has the following form g (x)=r7| x|, rel

n*

As a basic sequence in the Schwartz space S(R") we consider H ] (t) functions [7], that has following form

H;(t):Hi":lHj(ti), where  H,(t)=(2' i)™ (D)7 exp(t? /12)(d/dt;)V exp(—t7) (j=1) are



Hermits functions. The sequence {H; (t)}forms a basis in L*(R®) ([7], p.391). It is not hard to verify, that
A”(H,(t) H,(t,)H,t,))=pj+DH, ) H,t,)-H,(t,)(j >1). From this follows that {H; (t)}
forms a basis in nuclear space S(R")too. It is also proved that subspace A”(H (t)) admits an orthogonal
complement in the Schwartz space S(R") .Let {H(t)} be a sequence of Hermitian functions and G, be a
subspace of S(RF), spanned by H (t), ... . H_(t). It is easy to prove that this sequence {H (t))} is A" -
complete in S(RP) , ie. for any £>0 and g e S(RP) there exists n,=n,(g,&) such that
U, A”(G,)=E.

We will seek an approximate solution of orbital equation A”U= f in the form

u,(t) = iai H; () eG,,

which minimizes the discrepancy J,(9)=||Ag—f ||, where n isgivenby inf{{Ag—f|; geG, }el,.
Existence and uniqueness of approximate solution of orbital equation

By means of the injectivity of the operator A approximate solution U, €G, for A“U=f can be
constructed for each Me N and it is defined in a unique manner. Really, we prove that there exist U, such

that
Inf{” A@g ~f ”n’ g EGm}: r= ‘]n(um)'

We remark that positive function J,(g) attains its minimum on G,, at some point U,, only if its square

J2(g) attains its minimum on G_ at this point. But as is well known ([8], p.57), J?(g) attains its minimum

m
on G, at the function U (t) = Zalm H; (t) with coefficients that satisfy the system of equations

j=1
Do (AH (O, A"H, ), = (f, AH ), k=12,---m. (6)
j=1

Because A is one-to-one it follows that the function A”H, (t), ..., A®H_(t) are linearly independent for

any me M . It is well-known that necessary and sufficient conditions for the linear independence of the

system {(A"H] (t))}].,is that the Gramm determinant does not vanish: det(A” Hy (t) A”H, (t) ).#0, when

n=n(m). Hence, the determinant of the system { A” H, (t) }i-i™ is not zero, and (6) has an unique solution for
any Me N . From Theorem that s proved in [3] follows the following

Theorem 1. Let E be Frechet space the topology of which is defined with the nondecreasing sequence
of Hilbertian norms {||u||.}, T:E—E,, injective operator, U, be the exact solution of the operator



equation Tu="f .If {Hj} be a T -complete basic sequence and there exists continuous inverse operator T,

then the sequence of approximate solutions {u,,}, constructed using the method of least squares, converges to U,

in E. Moreover, the following estimates hold
a) Foreverynandm

[up =t Il <CL I T Ug =T Uy Iy »
where o'(n) is the function that characterize the continuity of the operator T .
b) For every n there exists m, =m, (n) such that for every m>m,
luo =t ll, <G| £ =Tup|.
From this follows the following
Theorem 2. Let A:D(A”)— D(A”)be harm A~: D(A”)— D(A”)be harmonic oscilator operator

and the topology of the space S(RP) is defined with the sequence of Hilbertian norms {||-||,} where

/ . . . ©
lu ||n:(||U I+ Au > +---+|| A" u ||2)1 ® Let U, be the exact solution of orbital equation A”u = f , then the

sequence of approximate solutions constructed using the method of least squares converges to U,in S(RP).

Moreover, the following estimates hold:
a) Forevery nand m

[[Uo =, [l <l Aup = AU, |l
b) Forevery n thereexists m, =m,(n) such that for every m>m,
U —up, l,<| £ =AU, |.
For every m
Uy —Uy, I<I T = A7U,, |.
Proof. The Hermitian function H; is eigen function for the operator A with the eigen number 2j+1.
Therefore
(AH; ,H;),=@j+)(H;,H;), =(H;,H)),. @)
It is well known, that the set of hermitian functions are dence in S(R) [6]. Therefore
(A" f ,A”f), >(f,f), for arbitrary f eS(R). While (Af,f)<|Af || f]l,. from (7) follows that

|| f,<I[Af||,. In this case C, =1 that follows From the inequality (A" f, f) >(f,f),,neN and this

theorem follows from Theorem 1.

The inequality (A”f,A”f), >(f,f), means time invertibility of the orbital operator A™. As well the
centrality (strongly optimality) of this algorithm is proved.

As well method for calculation of discrepancy r =] Au_ — f || with respect to the quasinorm of metric (5) on

S(RP) is given.
Example
As an example the following equation is considered

Au(t) =—u"(t) +t?u(t) =exp(-t?)sint, teR, ueS(R).
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We calculate the discrepancy
I Auy = F llo=(1 Auy = 2+ ACAU, = )2 4+ A (A, = £) 12,

where um(t):i(2j+1)‘1(f,Hj)Hj(t),
H, @) =2 D™ () 7z exp(t®/2)(d /dt)V exp(-t*) (j=1)

We have Aum(t):zm:(f,Hj)Hj(t) and

j=L
AU, (D) =D (2j+D) N (F,H)H; )
j=L
1A, = T ll=ll Auy = T 17+ A(AU, = ) [P+ + | AT (Au, — F) [I°=

= Au, - f|° +||Zm:(21'+1)(f1H,-)H,-(t)—Af ¥ +~~+||i(2]+1)"‘1(f,H,—)H,-(t)—A”‘l .

= j=1

The calculation results
Prof. M.D.Kublashvili receive the following results:

1. Whenn=2, then re[2°",2%?[=[1/2,andfor m=5 the quantity r =0,775...This means that
| Aug — f |=|| Aug — f ||,=r=0,775---,

2. Whenn=3,then re[2°",2%?[=[1/4,1/2[and form =7 the quantity r =0,342... This means that
| Au, — f |=| Au, — f ||l,=r =0,342.--.

When N >4 it was arise necessity of parallel computing. Prof. P. Tsereteli continued now calculation of
this quantities on claster. The algorithm (procedure) for direct calculation of quasinorm is also described.

Conducted numerical experiments confirm the received theoretical results.

M.D.Kublashvili was given also calculation of numerical solution for Schrodinger equation, connected
with movement of sea wave.
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