
On some applications of Hadamard matrices

George Giorgobiani, Vakhtang Kvaratskhelia,
Marine Menteshashvili

Muskhelishvili Institute of Computational Mathematics
of the Georgian Technical University, Georgia

South-Caucasus Computing and Technology Workshop
(SCCTW-2016),

Tbilisi, Georgia, October 3 - 7, 2016

George Giorgobiani, Vakhtang Kvaratskhelia, Marine Menteshashvili (Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Georgia)On some applications of Hadamard matrices SCCTW-2016 1 / 21



Abstract

In the presentation a short survey of the theory of Hadamard (Sylvester)
matrices is given. Moreover, numerical characteristic of Sylvester ma-
trices is introduced and some of its properties are shown.
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1. Hadamard matrices

There are various types of matrices in the literature having distinct prop-
erties useful for numerous applications, both practical and theoretical.
The famous matrix with orthogonal property is a Hadamard matrix,
which was first defined by J.J. Sylvester in 1867 and was studied further
by J.S. Hadamard in 1893.

Hadamard matrices have plenty of practical applications. It is an impor-
tant tool for the investigation of some problems of:

Quantum Computing,

Coding Theory and Cryptology,

Statistics,

Image Analysis,

Signal Processing,

Scheduling Theory,

Combinatorial Designs and so on.
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1. Hadamard matrices

Definition 1.1

A Hadamard matrix is a square matrix with entries equal to ±1 whose
rows (and hence columns) are mutually orthogonal.

In other words, a Hadamard matrix of order n is a {1,−1}-matrix H
satisfying the equality

HHT = nIn,

where In is the identity matrix of order n.
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1. Hadamard matrices

In 1867 Sylvester proposed a recurrent method for the construction of
Hadamard matrices of order 2n if a Hadamard matrix of order n is given.

Namely, if H is a Hadamard matrix of order n, then the matrix[
H, H
H, −H

]
is a Hadamard matrix of order 2n.
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1. Hadamard matrices

There are several operations on Hadamard matrices which preserve
the Hadamard property. For example:

(a) permuting rows, and changing the sign of some of them;

(b) permuting columns, and changing the sign of some of them;

(c) transposition.
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2. Hadamard determinantal inequality

In 1893 Hadamard presented his famous determinant bound, which
gives rise to the term Hadamard matrix.

Let us formulate this result and note that this problem so far remains
unsolved for matrices of general size.

Theorem 2.1
(J.S. Hadamard, 1893). Let A = (aij) be a real matrix of order n whose
entries satisfy the condition |aij | ≤ 1 for all i , j = 1,2, . . . ,n. Then

|det A| ≤ nn/2;

equality holds if and only if A is a Hadamard matrix.
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2. Hadamard determinantal inequality

One side of this theorem is proved in an elementary way.

Indeed, it is easy to see that if we denote by a1,a2, . . . ,an the rows of
the matrix A, then it is known that |det(A)| is the volume of the paral-
lelepiped with sides a1,a2, . . . ,an; so

|det(A)| ≤ ‖a1‖ · ‖a2‖ · . . . · ‖an‖,

where ‖ai‖ is the Euclidean length of ai ; equality holds if and only if
a1,a2, . . . ,an are mutually orthogonal. By hypothesis of the theorem

‖ai‖ =
(

a2
i1 + a2

i2 + . . .+ a2
in

)1/2
≤ n1/2,

with equality if and only if |aij | = 1 for all j .

It follows from these inequalities that actually

|det(A)| ≤ nn/2.
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2. Hadamard determinantal inequality

Hadamard’s bound implies that {1,−1}-matrices of size n have
determinant at most nn/2.

Hadamard observed that a construction of Sylvester, mentioned
above, produces examples of matrices that attain the bound when
n is a power of 2, and constructed examples of Hadamard
matrices of sizes of 12 and 20.

He also showed that the bound is only attainable when n is equal
to 1, 2, or a multiple of 4.
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3. Hadamard conjecture

In 1933 English mathematician R. Paley stated that the order n (n ≥ 4)
of any Hadamard matrix is divisible by 4. This is easy to prove. The
converse statement has been a long-standing conjecture.

Conjecture 3.1

For every positive integer n, there exists a Hadamard matrix of order
4n.

This conjecture obviously is true for the positive integers which are
power of 2.

The current smallest order for which the existence of a Hadamard matrix
is unknown is 668.
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4. Sylvester matrices

The sequence of the matrices defined by the following recurrence rela-
tion:

S(0) = [1], S(n) =

[
S(n−1), S(n−1)

S(n−1), −S(n−1)

]
, n = 1,2, . . .

are a particular case of the Hadamard matrices and are named the Syl-
vester (or Walsh) matrices.

S(n) =
[
s(n)

ij

]
is a square matrix of order 2n, where s(n)

ij = ±1.

Example 4.1

S(1) =

[
1, 1
1, −1

]
, S(2) =


1, 1, 1, 1
1, −1 1, −1
1, 1 −1, −1
1, −1 −1, 1

 , and so on.
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5. Numerical characteristic of Sylvester matrices

For a Sylvester matrix S(n) =
[
s(n)

ij

]
let us consider the functions

%(n)(m) =
2n∑

j=1

∣∣∣∣∣
m∑

i=1

s(n)
ij

∣∣∣∣∣ , m = 1,2, . . . ,2n,

and

%(n) = max
1≤m≤2n

%(n)(m).

It is easy to see that for any positive integer n the following simple esti-
mations are valid

2n ≤ %(n) ≤ 22n.
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5. Numerical characteristic of Sylvester matrices

Example 5.2

For the Sylvester matrix S(1) =
[
s(1)

ij

]
we have

%(1)(1) = 1 + 1 = 2, %(1)(2) = 2 + 0 = 2,

so
%(1) = max{2,2} = 2,

and for the Sylvester matrix S(2) =
[
s(2)

ij

]
we have

%(2)(1) = 1 + 1 + 1 + 1 = 4, %(2)(2) = 2 + 0 + 2 + 0 = 4,

%(2)(3) = 3 + 1 + 1 + 1 = 6, %(2)(4) = 4 + 0 + 0 + 0 = 4,

so
%(2) = max{4,4,6,4} = 6.
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6. Main Theorem

%(n) is numerical characteristic of matrix and, in particular, it is a
norm of a matrix on the linear space of all square matrices of
order 2n.

This function was successfully applied for the investigation of
convergence of series in different functional spaces.

Now our goal is estimation of this characteristic.
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6. Main Theorem

The following result gives a precise value of the function %(n):

Theorem 6.1
(Main Theorem). For every positive integer n we have

%(n) = max
1≤m≤2n

%(n)(m) =
3n + 7

9
· 2n + (−1)n · 2

9
.

For any n the maximum is attained at the points

mn =
2n+1 + (−1)n

3
and m

′
n =

5 · 2n−1 + (−1)n−1

3
.

From this theorem immediately follows the following

Corollary 6.2
For any positive integer n the following inequality is valid

%(n) ≤ n · 2n.

George Giorgobiani, Vakhtang Kvaratskhelia, Marine Menteshashvili (Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Georgia)On some applications of Hadamard matrices SCCTW-2016 15 / 21



6. Main Theorem

The following result gives a precise value of the function %(n):

Theorem 6.1
(Main Theorem). For every positive integer n we have

%(n) = max
1≤m≤2n

%(n)(m) =
3n + 7

9
· 2n + (−1)n · 2

9
.

For any n the maximum is attained at the points

mn =
2n+1 + (−1)n

3
and m

′
n =

5 · 2n−1 + (−1)n−1

3
.

From this theorem immediately follows the following

Corollary 6.2
For any positive integer n the following inequality is valid

%(n) ≤ n · 2n.

George Giorgobiani, Vakhtang Kvaratskhelia, Marine Menteshashvili (Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Georgia)On some applications of Hadamard matrices SCCTW-2016 15 / 21



6. Main Theorem

The following result gives a precise value of the function %(n):

Theorem 6.1
(Main Theorem). For every positive integer n we have

%(n) = max
1≤m≤2n

%(n)(m) =
3n + 7

9
· 2n + (−1)n · 2

9
.

For any n the maximum is attained at the points

mn =
2n+1 + (−1)n

3
and m

′
n =

5 · 2n−1 + (−1)n−1

3
.

From this theorem immediately follows the following

Corollary 6.2
For any positive integer n the following inequality is valid

%(n) ≤ n · 2n.

George Giorgobiani, Vakhtang Kvaratskhelia, Marine Menteshashvili (Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Georgia)On some applications of Hadamard matrices SCCTW-2016 15 / 21



6. Main Theorem

The following result gives a precise value of the function %(n):

Theorem 6.1
(Main Theorem). For every positive integer n we have

%(n) = max
1≤m≤2n

%(n)(m) =
3n + 7

9
· 2n + (−1)n · 2

9
.

For any n the maximum is attained at the points

mn =
2n+1 + (−1)n

3
and m

′
n =

5 · 2n−1 + (−1)n−1

3
.

From this theorem immediately follows the following

Corollary 6.2
For any positive integer n the following inequality is valid

%(n) ≤ n · 2n.

George Giorgobiani, Vakhtang Kvaratskhelia, Marine Menteshashvili (Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Georgia)On some applications of Hadamard matrices SCCTW-2016 15 / 21



7. Open Problem

S(n) =
[
s(n)

ij

]
– a Sylvester matrix of order 2n;

ai =
(

s(n)
i1 , s(n)

i2 , . . . , s(n)
i2n

)
, ai ∈ R2n

, i = 1,2, . . .2n.

By the Main Theorem of the Presentation we have:

%(n) =

∥∥∥∥∥
mn∑

k=1

ak

∥∥∥∥∥
l1

= (3n + 7)2n/9 + 2(−1)n/9,

where mn = (2n+1 + (−1)n)/3 and ‖ · ‖l1 is the l1-norm in R2n
,

(i.e. if b = (β1, β2, . . . , β2n ), then ‖b‖l1 =
∑2n

j=1 |βj |).
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7. Open Problem

Π(n) – the set of all permutations of the sequence {1,2, . . . ,2n};

Consider the following expression:

∥∥∥∥∥
mn∑

k=1

aπ(k)

∥∥∥∥∥
l1

, π ∈ Π(n).

We can prove that for any π ∈ Π(n)

∥∥∥∥∥
mn∑

k=1

aπ(k)

∥∥∥∥∥
l1

≤ 23n/2.

Note that we do not know how precise the last inequality is.
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7. Numerical characteristic of Hadamard matrices

The authors also do not know yet the answer to the following conjecture:

Conjecture 7.2
For any positive integer n ≥ 1 and for any permutation of integers
π ∈ Π we have∥∥∥∥∥

mn∑
i=1

aπ(k)

∥∥∥∥∥
l1

≥ (3n + 7)2n/9 + 2(−1)n/9.

Note that we have conducted a lot of computer experiments. The re-
sults do not contradict this Conjecture, though a theoretical proof is not
known yet.
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8. Conclusions

Therefore, let us summarize this presentation.

We recalled the definitions of Hadamard and Sylvester matrices;

We recalled the well-known Hadamard’s Conjecture;

We introduced the numerical characteristic %(n) of the Sylvester
matrix;

We calculated the precise value of this characteristic Main
theorem;

We formulated our Open Problem.

Finally, in the References some of our related papers are listed.
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