

Mathematical Modeling of Immunopathogenesis of Rheumatoid Arthritis

K. Odisharia, V. Odisharia, P. Tsereteli, N. Janikashvili

St. Andrew the First-Called Georgian University of the Patriarchate of Georgia Iv. Javakhishvili Tbilisi State University Tbilisi Sate Medical University Georgian Association of BioMathematics

Rheumatoid Arthritis

- Rheumatoid arthritis (RA) is a long-lasting immune mediated disorder
- RA may affect different joints
- Clinical signs of RA include redness, swelling and pain around the joint area

Rheumatoid Arthritis

RA is an autoimmune disorder that involves the cartilage destruction, bone damage and the joint inflammation

Immunopathogenesis of Rheumatoid Arthritis

Complex process that involves:

<u>B lymphocytes</u> and <u>**T lymphocytes**</u>

Immune response

Immune response

<u>B lymphocytes</u> are a subset of white blood cells, which secrete antibodies. Antibodies specifically bind to the foreign antigen, allowing its removal.

Immune response

<u>B lymphocytes</u> are a subset of white blood cells, which secrete antibodies. Antibodies specifically bind to the foreign antigen, allowing its removal.

<u>T lymphocytes</u> are a subset of white blood cells, which secrete cytokines.

Type and nature of cytokines guide the immune response by activating or suppressing other immune cells including B lymphocytes.

T lymphocytes

There are several different types of T lymphocytes, among them are:

Regulatory T cells Treg

Provide help to other cells in the immune response by activating T and B cells.

Regulate the other immune cells by suppressing their activity.

Th play a critical role in immune activation and prevention of immunodeficiency and cancer

Treg play a critical role in the prevention of inflammation and autoimmunity

Immune balance

Inflammation

Immunodeficiencies

Autoimmunity

Autoimmunity occurs when the immune system fails to properly distinguish between "self" and "nonself",

and attacks part of the body inducing strong inflammatory response against self substances

Inflammation

Immunopathogenesis of Rheumatoid Arthritis

Autoreactive B cells that produce antibodies against the cartilage of the joint and destroy it

Helper T cells that stimulate the growth of autoreactive B cell clone

Regulatory T cells that are diminished and unable to regulate the growth of helper T cell and autoreactive B cell

Inflammation

Treatment of Rheumatoid Arthritis

rasco para ectáveis de

Tocilizumab

(Anti-interleukine-6-receptor antibodies)

A novel immunotherapeutic drug

Recent preclinical and clinical trials show that Tocilizumab specifically blocks Helper T cell growth and transforms them to regulatory T cells, e.i. restores Th / Treg balance

Therefore, this drug is the most prospective therapy in Rheumatoid Arthritis

Current medical problem is the optimization of treatment dose and duration for each individual patient

Mathematical Modeling of Immunopathogenesis of Rheumatoid Arthritis

The first objective:

To establish a mathematical model that describes the immunopathogenesis of RA using non-linear differential equations

The second objective:

Using our mathematical model, to provide a mechanistic interpretation of immunotherapeutic effects of Tocilizumab which deals with the dose efficacy of the treatment

Mathematical Modeling of Immunopathogenesis of Rheumatoid Arthritis

The first objective:

To establish a mathematical model that describes the immunopathogenesis of RA using non-linear differential equations

The second objective:

Using our mathematical model, to provide a mechanistic interpretation of immunotherapeutic effects of Tocilizumab which deals with the dose efficacy of the treatment

Assumptions

- Autoreactive B cells grow logistically in response to the self-antigens of the cartilage
- > Helper T cells grow logistically
- Helper T cells stimulate the growth of autoreactive B cells => disease progresses
- Source of regulatory T cells is considered outside of the system
- Regulatory T cells suppress the growth of B cells and helper T cells => disease regresses

- J(t) Joint (cartilage) amount at time t
- B(t) number of autoreactive B cells at time t
- $T_h(t)$ number of Helper T cells at time t
- T_{reg}(t) number of regulatory T cells at time t

 $\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$

r and K are positive numbers

If
$$N(0) = N_0$$

$$N(t) = \frac{N_0 K e^{rt}}{\left[K + N_0 \left(e^{rt} - 1\right)\right]} \to K$$

Logistic growth

B cells equation

$$r_1B(t)(1-b_1B(t))$$
 Logistically growth
 $c_1B(t)T_h(t)$ Stimulated growth
 $d_1B(t)T_{reg}(t)$ Suppression

$$\frac{dB}{dt} = r_1 B(t) (1 - b_1 B(t)) + c_1 B(t) T_h(t) - d_1 B(t) T_{reg}(t)$$

Helper T cells equation

$r_2T_h(t)(1-b_2T_h(t))$ Logistically growth

 $\frac{dT_h}{dt} = r_2 T_h(t) \left(1 - b_2 T_h(t)\right)$

Regulatory T cells equation

 $s_2 - d_2 T_{reg}(t)$ Growth

 $\frac{dT_{reg}}{dt} = s_2 - d_2 T_{reg}$

Joint (cartilage) equation

 $\frac{dJ(t)}{dt} = -a_1 J(t) \Big(B(t) - B^{norm} \Big)$

 $a_1 > 0$ $B(t) \ge B^{norm}$

Mathematical model

$$\begin{aligned} \frac{dJ(t)}{dt} &= -a_1 J(t) \Big(B(t) - B^{norm} \Big) \\ \frac{dB}{dt} &= r_1 B(t) \Big(1 - b_1 B(t) \Big) + c_1 B(t) T_h(t) - d_1 B(t) T_{reg}(t) \\ \frac{dT_h}{dt} &= r_2 T_h(t) \Big(1 - b_2 T_h(t) \Big) \\ \frac{dT_{reg}}{dt} &= s_2 - d_2 T_{reg} \end{aligned}$$

Mathematical Modeling of Immunopathogenesis of Rheumatoid Arthritis

The first objective:

To establish a mathematical model that describes the immunopathogenesis of RA using non-linear differential equations

The second objective:

Using our mathematical model, to provide a mechanistic interpretation of immunotherapeutic effects of Tocilizumab which deals with the dose efficacy of the treatment

> The drug blocks helper T cells growth

The drug transforms part of helper T cells into regulatory T cells

Drug effects: equation

$$F(u) = a \left(1 - e^{-mu} \right)$$

- $a > 0 \quad m > 0$
- F(u) Is fractional cell transformation or suppression for a given amount of drug u, at the arthritis side

$$\frac{du(t)}{dt} = v(t) - d_3 u(t)$$

v(t) Drug dose

d₃ Per capita decay rate of the drug once it is injected. It incorporates all pathways of elimination of the drug

Mathematical model with the drug

$$\begin{aligned} \frac{dJ(t)}{dt} &= -a_1 J(t) \Big(B(t) - B^{norm} \Big) \\ \frac{dB}{dt} &= r_1 B(t) \Big(1 - b_1 B(t) \Big) + c_1 B(t) T_h(t) - d_1 B(t) T_{reg}(t) \\ \frac{dT_h}{dt} &= r_2 T_h(t) \Big(1 - b_2 T_h(t) \Big) - k_1 \Big(1 - e^{-m_1 u} \Big) T_h - k_2 \Big(1 - e^{-m_2 u} \Big) T_h \\ \frac{dT_{reg}}{dt} &= s_2 - d_2 T_{reg} + k_2 \Big(1 - e^{-m_2 u} \Big) T_h \\ \frac{du(t)}{dt} &= v(t) - d_3 u(t) \end{aligned}$$

Conclusions

This is a novel mathematical model that explores the functional dynamics of cartilage destruction during **RA**.

The model explains:

- Interactions between autoreactive B lymphocytes and T cell subsets
- Helper T lymphocyte and regulatory T lymphocyte interactions
- ✓ Fractional cell transformation from helper T cells to regulatory T cells for a given amount of drug
- \checkmark Optimization of the injection frequencies

Acknowledgement

Team & Collaborators

Pr Nona Janikashvili Pr Paata Tsereteli Pr Vladimer Odisharia Mr Kakhaber Odisharia

Pr Hamlet Meladze

St. Andrew the First Called Georgian University of the Patriarchate of Georgia

Pr Vakhtang Kokilashvili

Georgian National Academy of Sciences

Pr Tinatin Chikovani

Tbilisi State Medical University, Georgia

Pr Bernard Bonnotte

INSERM U1098, University of Burgundy, France

Dr Maxime Samson

University Hospital of Dijon, University of Burgundy, France

Pr Neville Ford

University of Chester, United Kingdom

Pr Ramit Mehr

Bar-Ilan University, Israel