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1. Problem formulation  

Let us consider the nonlinear equation 

𝜕2𝑢

𝜕𝑡2
(𝑥, 𝑡) +  

𝜕4𝑢

𝜕𝑥4
(𝑥, 𝑡) − ℎ

𝜕2𝑢

𝜕𝑥2𝜕𝑡2
(𝑥, 𝑡) − (𝜆 + ∫ (

𝜕𝑢

𝜕𝜉
(𝜉, 𝑡))

2𝐿

0

𝑑𝜉)
𝜕2𝑢

𝜕𝑥2
= 𝑓(𝑥, 𝑡),           (1)  

0 < 𝑥 < 𝐿, 0 < 𝑡 ≤ T 

 

  

With the initial boundary conditions  

𝑢(𝑥, 0) = 𝑢0(𝑥),   
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑢1(𝑥), 

𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0,  
𝜕2𝑢

𝜕𝑥2
(0, 𝑡) =

𝜕2𝑢

𝜕𝑥2
(𝐿, 𝑡) = 0,                                (2) 

where h and 𝜆 are some nonegative  constants, 𝑢0(𝑥), 𝑢1(𝑥) and  𝑓(𝑥, 𝑡) are the given functions 

and u(x,t) is the function we want to obtain.  

    Equation (1) corresponds to the dynamic state of a beam. It is given in E. Henriques de brito [1] 

and belongs to the class of equations based on the Timoshenko theory [2]. For 𝜆 = 0, (1) is derived in 

[3] and [4] by passing to the limit in the one-dimensional version of the von karman system 

describing approximately the plane motion of a uniform prismatic beam. More precisely, based of 

the system of equations [5] 

𝑢𝑡𝑡 − (𝑢𝑥 +
1

2
𝑤𝑥

2)
𝑥

= 0, 

                                        𝑤𝑡𝑡 + 𝑤𝑥𝑥𝑥𝑥 − ℎ𝑤𝑥𝑥𝑡𝑡 − [𝑤𝑥 (𝑢𝑥 +
1

2
𝑤𝑥

2)]
𝑥

= 𝑓, 



 

a coefficient 𝜀 > 0 is attached to the term 𝑣𝑡𝑡 and then the limit is taken respect 𝜀 ⟶ 0 provided 

that the condition v(0, t) = v(L, t) is fulfilled.   

In [6], the equation for a beam is considered, in which equation (1) is generalized in a certain sense. 

Another Timoshenko model for beam vibration has the form [7] 

𝜕2𝑢

𝜕𝑡2
= (𝑐𝑑 − 𝑎 + 𝑏 ∫ (

𝜕𝑢

𝜕𝜉
)

2
𝐿

0

𝑑𝜉)
𝜕2𝑢

𝜕𝑥2
− 𝑐𝑑

𝜕𝜓

𝜕𝑥
 , 

𝜕2𝜓

𝜕𝑡2 = 𝑐
𝜕2𝜓

𝜕𝑥2 − 𝑐2𝑑 (𝜓 −
𝜕𝑢

𝜕𝑥
).                                                                      (3) 

 

Comparing (1) and (3), we discover that both models have a common nonlinearity of the form 

(∫ (
𝜕𝑢

𝜕𝜉
)

2
𝐿

0

𝑑𝜉)
𝜕2𝑢

𝜕𝑥2
 , 

which in 1876 Kirchhoff used for the first time in the equation for a string [5] 

𝜕2𝑢

𝜕𝑡2
− (𝛼0 + 𝛼1 ∫ (

𝜕𝑤

𝜕𝜉
)

2
𝜋

0

𝑑𝜉)
𝜕2𝑢

𝜕𝑥2
= 0 ,                                                                                              (4) 

 

and which was called the K-correction in [2]. Note that the K-correction is inherent in various 
models of beams and plates, and a lot of published works are devoted to the problem of solution 
existence and uniqueness as well as to a number of other problems for equation (4) and its 
generalizations, in particular for the equation    
 

𝜕2𝑢

𝜕𝑡2 = 𝜑 (∫ (
𝜕𝑢

𝜕𝜉
)

2𝜋

0
𝑑𝜉)

𝜕2𝑢

𝜕𝑥2 .                                                                                             (5) 

 

There are several papers in which for the above equations the approximate solution algorithms are 
constructed and their error is estimated. The bibliography related to this topic is partly presented in 
[13]. 

The solvability of system (3) and a system differing from it in the presence of first derivatives 
of the unknown functions with respect to time is investigated in [15] and [1], respectively, while in 
[11], for (3) an approximation algorithm is constructed and its error is estimated. The question of 
numerical solution of the linearized Timoshenko system is dealt with in [7]. 

As for the considered equation (1), note that in [3] the existence and uniqueness of a solution 
of a more general equation than (1) is proved. The present paper is partly devoted to the topic of 
construction of an approximate solution. Here we use the approach applied by us in [11]–[13] for 
system (3) and equations (4) and (5) as the first step on the path of approximate solution of the 
problem. It consists in approximation with respect to the variable x by the Galerkin method. The 
error estimate is derived by means of a priori inequalities and, moreover, all coefficients contained 



in it are expressed in explicit form through the initial data of the problem, which makes it possible 
to obtain a numerical value of the upper bound of the method error. 
 
 
 
 
 
 
 
 

2. SOLVABILITY 
 
In [3], the existence and uniqueness of a generalized solution of the Cauchy problem is proved for 
the equation 

 

a particular case of which is equation (1). Let us apply the result of [3] to our case. 
The symbol ( , ) will be understood as a scalar product in L 2(0, L ). Let us present the result of 

such that u is a weak solution of problem (1), (2), i.e. for every  

𝑑

𝑑𝑡
[(

𝜕𝑢

𝜕𝑡
 , 𝑣) + ℎ (

𝜕2𝑢

𝜕𝑥𝜕𝑡
,

𝜕𝑣

𝜕𝑥
)]+(

𝜕2𝑢

𝜕𝑥2 ,
𝜕2𝑣

𝜕𝑥2)+(𝜆 + ∫ (
𝜕𝑢

𝜕𝑥
)

2𝐿

0
𝑑𝑥) (

𝜕𝑢

𝜕𝑥
,

𝜕𝑣

𝜕𝑥
) = (𝑓, 𝑣)                                   (8) 

and 

𝑢(𝑥, 0) = 𝑢0(𝑥),   
𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝑢1(𝑥),                                              (9) 

Let us make the conclusions needed in the sequel. 

With (7) taken account we wrire the solution of the problem in the form  

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑖

𝑛

𝑖=1

(𝑡)𝑠𝑖𝑛
𝑖𝜋𝑥

𝐿
,                                                                        (10) 

where, as follows from (8), after replacing the function v by the function sin
𝑖𝜋𝑥

𝐿
 , i=1,2,…, n. the 

coefficients 𝑢𝑖(𝑡) satisfy the system of equations 



(1 + ℎ (
𝜋𝑖

𝐿
)

2

) 𝑢𝑖
′′(𝑡) +  (

𝜋𝑖

𝐿
)

4

𝑢𝑖(𝑡) + (𝜆 +  
𝐿

2
∑ (

𝜋𝑗

𝐿
)

2∞

𝑗=1

𝑢𝑗
2(𝑡)) (

𝜋𝑖

𝐿
)

2

𝑢𝑖(𝑡) = 𝑓𝑖(𝑡)                  (11) 

𝑖 = 1, 2, …   ,      0 < 𝑡 ≤ 𝑇, 

where 

𝑓𝑖(𝑡) =  
2

𝐿
∫ 𝑓(𝑥, 𝑡)𝑠𝑖𝑛

𝑖𝜋𝑥

𝐿

𝐿

0

 𝑑𝑥 , 

To system (8) we add the initial conditions which follow from (7) and (6) 

𝑢𝑖(0) = 𝑎𝑖
(0)

, 𝑢𝑖
′(0) = 𝑎𝑖

(1)
, 𝑖 = 1, 2, … ,     

Here  

𝑎𝑖
(𝑙)

=   
2

𝐿
∫ 𝑢𝑖

(𝑙)
(𝑥)𝑠𝑖𝑛

𝑖𝜋𝑥

𝐿

𝐿

0

 𝑑𝑥,   𝑙 = 0, 1. 

Finally, in view of (10) and (7) we conclude that 

 

 

 

 

 

 

 

 

 



 

 

where 𝑝0, 𝑝1, 𝜔0 and 𝜔1 are some positive numbers. 
Note that the fulfillment of this condition implies the feasibility of (6). As we will see, inequalities 

(15) are introduced to facilitate the calculation of certain parameters. At the end of the paper, the 
case is considered, in which this restriction does not hold.



 
  

4. GALERKIN METHOD AND ITS ERROR 
 

Let us perform approximation of the solution with respect to the variable x. For this we use the 
Galerkin method. A solution will be sought in the form of the finite series 

 

 

 

where the coefficients uni(t) are a solution of the system of the differential equations 

(1 + ℎ (
𝜋𝑖

𝐿
)

2

) 𝑢𝑛𝑖
′′ (𝑡) + (

𝜋𝑖

𝐿
)

4

𝑢𝑛𝑖(𝑡) +  (𝜆 +  
𝐿

2
∑ (

𝜋𝑗

𝐿
)

2∞

𝑗=1

𝑢𝑛𝑗
2 (𝑡)) (

𝜋𝑖

𝐿
)

2

𝑢𝑛𝑖(𝑡) = 𝑓𝑖(𝑡),        (17) 

𝑖 = 1, 2, … , 𝑛,        0 < 𝑡 ≤ 𝑇,  

 

 

Now our aim is to estimate the error of the Galerkin method. Let us give the definition of this 
error. By the coefficients of decomposition (10) we form the function 
 
 

 

From (20), (16) and (19) follows  

 

 

 



Below, we will denote by ||  || the norm in the space L 2(0, L ). Let us derive the equations for 
δni(t). Using the first n equations of system (11) and the first n equalities from each of the initial 
conditions (12), we subtract them from the corresponding equations of system (17) and conditions 
(18). As a result, applying (22), (16) and (19), we obtain the system of equations for δni(t) 

 

 

 

With the initial conditions 

𝛿𝑛𝑖(0) = 0,     𝛿𝑛𝑖
′ (0) = 0,   𝑖 = 1, 2, … , 𝑛.                                                                                            (24)        

Here  

𝛽𝑛(𝑡) =  
2

𝐿
‖𝑢𝑥(𝑥, 𝑡) − (𝜋𝑛𝑢)𝑥(𝑥, 𝑡)‖2 =  ∑ (

𝜋𝑖

𝐿
)

2

𝑢𝑖
2

∞

𝑖=𝑛+1

(𝑡).                                                  (25) 

 

System (23) and conditions (24) are the starting point of the investigation of the problem of method 

accuracy estimation. 

we are going to speak about 𝑓(𝑥, 𝑡) = 0. 

soon we will comlate the investigation when 𝑓(𝑥, 𝑡) ≠ 0. 

 

Lemma 1 

The estimate 

‖
𝜕𝑙

𝜕𝑥𝑙
𝜋𝑛𝑢(𝑥, 𝑡)‖

2

≤ 𝑐𝑙−1,   𝑙 = 1, 2,                                                                                                           (26) 

where 𝑐0 𝑎𝑛𝑑 𝑐1 do not depend on n and t, is valid. 

 Proof  

Multiply (11) by 2ui(t) and sum the obtained expression over i = 1, 2, . . . .  If we use (10), (13) 
and denote 



 

 

Φ(𝑡) =
2

𝐿
(‖𝑢𝑡(𝑥, 𝑡)‖2 + ℎ‖𝑢𝑥𝑡(𝑥, 𝑡)‖2 + ‖𝑢𝑥𝑥(𝑥, 𝑡)‖2) +

1

𝐿
(𝜆 + ‖𝑢𝑥(𝑥, 𝑡)‖2)2,                           (27) 

then the result is written as Φ′(𝑡) = 0,  which means that for 0<t≤T 

Φ(𝑡) = Φ(0).                                                               (28) 

Applying (27), (10) and (19) in (28) we find 

(‖𝑢𝑡(𝑥, 𝑡)‖2 + ℎ‖𝑢𝑥𝑡(𝑥, 𝑡)‖2 + ‖𝑢𝑥𝑥(𝑥, 𝑡)‖2) +
1

𝐿
(𝜆 + ‖𝑢𝑥(𝑥, 𝑡)‖2)2 ≤ Φ(0).      (29) 

Let us calculate Φ(0). By (27) and (9), we have    

Φ(0)= 
2

𝐿
 (‖𝑢1(𝑥)‖2 + ℎ‖𝑢1′(𝑥)‖2 + ‖𝑢0′′(𝑥)‖)2 + 

1

𝐿
 (𝜆 +‖𝑢0′(𝑥)‖2)2.         

From (29), first, taking into account that by virtue of (19)      ‖(𝜋𝑛𝑢)𝑥𝑥(𝑥, 𝑡)‖ ≥

𝜋

𝐿
‖(𝜋𝑛𝑢)𝑥(𝑥, 𝑡)‖,      we obtain (26) for         𝑙 =1, where  

𝑐0 = ((
𝜋

𝐿
)

4
+ 2𝜆 (

𝜋

𝐿
)

2
+ 𝐿Φ(0))

1

2

− (
𝜋

𝐿
)

2
− 𝜆 .                                                             (30)      

and  then verify the fulfillment of (26) for 𝑙 = 2,  where  

𝑐1 =
𝐿

2
Φ(0).                                                                                                (31) 

The lemma is proved.                                                                                                                           ∎ 

 

Lemma 2  

The inequality 

‖𝑢𝑛𝑥(𝑥, 𝑡)‖2 ≤ 𝑐2,                                                                                              (31) 

where  the value 𝑐2 does not depend on t, is valid. 

Proof 

Multiply (17) by 2𝑢𝑛𝑖
′ (𝑡) and sum the obtained over 𝑖 = 1, 2, …  , 𝑛.  using (16), the result can be 

written in the form Φ𝑛
′ (𝑡) = 0, where 



 

which together with (32) and the astimate ‖𝑢𝑛𝑥𝑥(𝑥, 𝑡)‖ ≥
𝜋

𝐿
‖𝑢𝑛𝑥(𝑥, 𝑡)‖     which follows from (16) 

imply the fulfillment of (31) where 

𝑐2 = ((
𝜋

𝐿
)

4

+ 2𝜆 (
𝜋

𝐿
)

2

+ 𝐿Φ𝑛(0))

1
2

− (
𝜋

𝐿
)

2

− 𝜆 .                                                  (34) 

The lemma is proved.                                                                                                                                         ∎ 

 

 

which  are the result of the application of (32), (16), (18) together with (27), (10), (12), (15) and the 

integral test for the convergence of series. 

Comparing (30) and (34) and applying (35) we observe that 

𝑐2 ≤ 𝑐0.                                                                                                                       (36) 

Let us estimate 𝛽𝑛(𝑡) defined by (25). 

Lemma 3 

The inequality 

 



where the values 𝑐𝑙 , 𝑙 = 3, 4, …  , 7,  do not depend on n and t, is valid. 

Proof 

Using (13), let us introduce into the consideration the function 

 

we need to estimate its value for t=0. By (12), (9) and (25), we get 

 

The application of (15) and the integral test of the convergence of series gives  

 

Further, comparing formulas (25) and (38), we conclude that 

 

Now, let us estimate the function 𝜓𝑛(𝑡). After multiplying (11) by 2𝑢𝑖
′(𝑡), summing the resulting 

equality over 𝑖 = 𝑛 + 1, 𝑛 + 2, …  ,  and using (38) and (25), we obtain 

 

By (10), (27) and (28), we have 



 

By virtue of (41) – (43), (38) and the Gronwall inequality 

 

Applying relations (41)-(44) and (40) successively, we see that (37) is fulfilled and also that 

 

 

Let us formulate the main result. 

Theorem 

 

Multiplying (23) by L𝛿𝑛𝑖
′ (𝑡), performing summation over 𝑖 = 1, 2, …  , 𝑛, and taking into account (21), 

we obtain 



 

Let us estimate terms in the right-hand part of relation (47). 

Using (16), (32) and (33), by analogy with (43) we get 

 

Further, by virtue of (19), (16), (21), (22), (26) and (31), we see that 

 

Finally, again using (19), (21) and (26), we find 

 

Relations (47)-(51) together with (21), (24), (37) and the inequalities 

‖𝛿𝑛𝑥𝑡(𝑥, 𝑡)‖ ≥
𝜋

𝐿
‖𝛿𝑛𝑡(𝑥, 𝑡)‖, ‖𝛿𝑛𝑥𝑥(𝑥, 𝑡)‖ ≥

𝜋

𝐿
‖𝛿𝑛𝑥(𝑥, 𝑡)‖,   allow us to infer that 

 

Applying the Gronwall inequality and definition (48), we obtain estimate (46) together with the 

formula for the coefficient c(t) 

c(t)=𝑐3
√𝑡𝑒max(𝑐8,𝑐9)𝑡 . 



The theorem is proved.                                                                                                                                       ∎ 

Note that if we weaken the accuracy requirement, relations (52) can be simplified. By virtue of 

(35) and (36), Φn(0) and c2 in (52) can be replaced by Φ(0) and c0. 
The fulfillment of inequalities (15) is not obligatory. We will obtain the method error estimate 

in the general case where the initial functions satisfy only (6) and (14). For this, only one change 
should be made in the proof of the theorem. Instead of (37), the result of using of relations (44), 
(39), (45) in (41) should be used as the estimate of βn(t). Then, instead of (46) we will have 

 

The right-hand side of (53) tends to zero as n→ ∞, which means that Galerkin  discretization is 

convergent. Moreover, using (53) one can obtain estimates analogous to (46) provided that 𝑎𝑖
0 and 

𝑎𝑖
1 change by a rule different from (15). 

We have obtained corresponding calculating formulas  for all coefficients taking part in this 

investigation. 
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