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Abstract. We study the classical 1D Heisenberg spin glasses assuming that spins are

spatial. The system of recurrence equations is derived by minimization of the nearest-

neighboring Hamiltonian in nodes of 1D lattice. We have proved that in each node of

the lattice there is a probability that the solution of recurrence equations can bifurcate.

This leads to the fact that, performing a consecutive node-by-node calculations on the

n-th step instead of a single stable spin-chain we get a set of spin-chains which form

Fibonacci subtree (graph). We have assessed the complexity of computation of one

graph and have shown that it is ∝ 2nKs, where n and Ks denote the subtree’s height

(the length of spin-chain) and the Kolmogorov’s complexity of a string (the branch

of subtree) respectively. It is shown that the statistical ensemble may be represented

as a set of random graphs, where the computational complexity of each graph is NP

hard. It is proved, that all strings of the ensemble have the same weights. The

latter circumstance allows in the limit of statistical equilibrium with predetermined

accuracy to reduce the NP hard problem to the P problem with complexity ∝ NKs,

where N is the number of spin-chains in the ensemble. As it is shown by comparing

statistical distributions of different parameters which are performed by using NP and

P algorithms the coincidence of the corresponding curves is ideal. This allows to claim

that it is possible to calculate all parameters and the corresponding distributions of

the statistical ensemble from the first principles of classical mechanics without using

any additional considerations. Finally, using formal similarity between of the ergodic

dynamical system and the ensemble of spin-chains, it is proposed a new representation

for the partition function in the form of one dimensional integral from the spin-chains’

energy distribution.
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1. Introduction

A wide class of phenomena in physics, chemistry, material science, biology, nanoscience,

neural network, evolution, organization dynamics, hard-optimization, environmental

and social structures, human logic systems, financial mathematics etc, mathematically

are well described by models of spin glasses [1, 2, 3, 5, 6, 4, 7, 8, 9, 10]. Despite numerous

studies nonetheless there are still a number of topical issues in the field of spin glasses

and disordered systems as a whole, the solution of which is extremely important from

the point of view of the development of modern technologies. We can mention important

ones of them;

a) The simulation of spin glasses far from thermodynamic equilibrium. Obviously,

in such cases, we can not enter the ambient temperature and, respectively, write and

use a standard representation for partition function.

b) Even if it is assumed that spin glass is in the state of the thermodynamic

equilibrium, and for it may be written in the standard form the partition function,

in the frameworks of standard theoretical and numerical methods,it remains an open

research question of metastable states. Recall that the Monte Carlo simulation methods

allow us to study the spin systems only in the ground state, at the time when the real

statistical system, all the more spin glasses, always are in the metastable states, i.e in

the state where characterizing the spin glass parameters have some distributions.

c) At definition of the partition function, a priori is assumed that the total

weight of nonphysical spin configurations in the configuration space is a zero that in

a number of cases may be an incorrect assumption. Recall that under the nonphysical

spin configurations, we mean such spin-chains, which are unstable based on the basic

principles of classical mechanics.

d) The computational complexity of spin glasses often applies to the class of the NP

hard problems. This circumstance to require the development of new efficient algorithms

for a numerical simulation of spin glasses that one way or another leads to the problem

of reduction of the NP to the P problem.

As it was shown in works [11, 12, 13, 14], the problem of spin glasses even in the

state of the thermodynamic equilibrium often are NP hard problems, whose source of

which is in the diverging equilibration at simulations by the Monte Carlo methods [15].

In the last time in the statistical physics occurs a rapid growth the number of works

on methods of the combinatorial optimization [16, 17, 18]. In particular a number of

disordered statistical systems have been mapped onto combinatorial problems, for which

a fast combinatorial optimization algorithms are available [19, 20]. So, combinatorial

methods and corresponding algorithms are often used for a simulation of spin glasses

especially when studying the phenomena such as phase transitions where they have given

valuable insights about questions that are hard to investigate by traditional techniques,

for example by Monte Carlo simulations [11]). However, the above-mentioned problems,

on which we want to receive clear answers, obviously require to development principally

new approaches.
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In this paper we will study the classical 1D spin glass problem suggesting that only

the nearest neighboring spins interact. Recall despite the simplicity of the model, since

in a known sense it’s an exactly solvable model [21], as it will shown below, all the

aforementioned problems in this model are present, if we try to solve the task from first

principles of classical mechanics.

One of the important goals of this work is to prove, that in the limit of statistical

equilibrium the initial NP-hard problem with the prescribed accuracy can be reduced

to the P problem, that in turn implies the creation of high-performance algorithm for

simulation of the Heisenberg type spin glasses. In the work possibilities of generalization

of the model for descriptions of more complex and realistic disordered systems of nature

are also discussed.

2. Definition of model

The Hamiltonian of the 1D chain of disordered spatial spins, in the framework of the

nearest-neighboring model may be written as:

H = −
∑

i∈N

Ji, i+1s is i+1, s i ∈ R
3, ||s i|| = ||s i+1|| = 1, (1)

where N = {1, ..., n} is the set of nodes on 1D lattice, the couplings Ji, i+1 are

independent random variables characterizing the power of interactions between the

spins. The distribution of the coupling constants will be found below as a result of

the numerical simulation.

Since the norm of vector s i = (xi, yi, zi) is equal to the unit, then the projection,

zi can be represented in the following form:

zi = qi|zi|, zi = (1− x2
i − y2i )

1/2 > 0, qi = sign(zi), (2)

where qi is a discrete variable which can take two possible values +1 and -1.

The local minimum of the Hamiltonian (1) in an arbitrary node i is defined by

the equations of stationary point and by the Sylvester conditions. Hamiltonian takes

an extreme value in the node i-th, if the vector equation is performed; ∂H/∂si =

(∂H/∂xi; ∂H/∂yi) = 0, that is equivalent to the following system of recurrence

equations:

Ji−1, i(xi−1 − xizi
−1zi−1) + Ji, i+1(xi+1 − xizi

−1zi+1) = 0,

Ji−1, i(yi−1 − yizi
−1zi−1) + Ji, i+1(yi+1 − yizi

−1zi+1) = 0. (3)

Solving the system of equations (3), with respect to the variables xi+1 and yi+1, it can

be found:

xi+1 = Cx/Ji, i+1, yi+1 = Cy/Ji, i+1, (4)

where the following notations are made:

Cx(y) =
Ax(y) − By(x)(C ±

√
D)

1 +B2
x +B2

y

, Aη = ηizi
−1zi−1 − ηi−1, Bη = ηizi

−1qi+1,
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D = (1 +B2
x +B2

y − A2
x − A2

y − C2) > 0, C = AxBy − AyBx, η = (x, y).

Now, for the Hamiltonian (1) we can obtain the conditions of the local minimum.

It is obvious that i-th spin is in the stable equilibrium, if in the stationary point the

following inequalities are satisfied:

Axixi
(s0

i ) > 0, Axixi
(s0

i )Ayiyi(s
0
i )−A2

xiyi
(s0

i ) > 0, (5)

where Aηiηi = ∂2H/∂η2i and Axiyi = ∂2H/∂xi∂yi; in addition s
0
i denotes i-th spin which

is in a stable equilibrium.

Using (2), (3) and (5), we can calculate the explicit forms of the second order derivatives:

Aηiηi = (η2i + z2i )z
−3
i ∆i, Axiyi = xiyiz

−3
i ∆i, ∆i = (Ji−1, izi−1 + Ji+1, izi+1), (6)

and taking into account (5) and (6) we find the conditions of the local minimum energy:

Axixi
= (1− y2i )z

−3
i ∆i > 0, Axixi

Ayiyi − A2
xiyi

= z−4
i ∆2

i > 0. (7)

Since, by definition (2) zi > 0, then both of the conditions in (7) are satisfied:

∆i = (Ji−1, izi−1 + Ji+1, izi+1) > 0. (8)

Thus in each node the solutions defining the orientation of the spin in the state of the

local equilibrium can be found, if we find such coupling constants Ji, i+1, for which not

only conditions (7) or (8) are satisfied, but also holds the inequality:

J2
i, i+1 ≥ C2

x + C2
y > 0. (9)

As will be shown below, the additional condition (9) will play an important role at

simulation.

Thus, we have obtained the system of recurrence equations (4) and corresponding

Sylvester’s conditions (7) on the basis of which we must to develop a parallel algorithm

for calculations of the spin glass.

3. Geometric properties of disordered 1D spin-chain

Theorem. If the set of spatial spins; {s} = (s1, .., sn) forms the stable 1D spin-chain

(see conditions (7)) then they necessarily are coplanar in the sense, that at parallel

moving to the origin all spins lie in the same plane.

Proof. Let us consider the three consecutive spatial spins si−1, si and si+1 on the

1D lattice. If we join the origins of two consecutive spins si−1 and si, they will form a

plane Λ0. In this connection arises the question namely as subsequent spins are oriented

relative to the plane Λ0? Since these spins are in the positions of local minimums, we

can use the system of equations (3) for defining bonds between projections of three

nearest-neighboring spins. In particular from the first equation in (3) we can find the

following expression for zi+1:

zi+1 =
Ji−1, i(xi−1zi − xizi−1) + Ji, i+1xi+1zi

Ji, i+1xi

. (10)
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Substituting zi+1 into the second equation in (3) we can find the expression of bond

between projections of two spins si−1 and si:

xi−1yi − xiyi−1 =
Ji, i+1

Ji−1, i
(xi+1yi − xiyi+1). (11)

The spin si+1 is a parallel to the plane Λ0, if the following equation is satisfied:

∣∣∣∣
xi−1 yi−1 zi−1

xi yi zi
xi+1 yi+1 zi+1

∣∣∣∣= 0. (12)

We can write the equation (12) in the explicit form:

det | · | = xi−1yizi+1 + xi+1yi−1zi+1 + xiyi+1zi−1 − xi+1yizi−1 − xiyi−1zi+1 − xi−1yi+1zi =

xi+1

[
−Ji, i+1

Ji−1, i
(yi+1zi−yizi+1)

]
+yi+1

[Ji, i+1

Ji−1 ,i
(xi+1zi−xizi+1)

]
+zi+1

[
−Ji, i+1

Ji−1, i
(xi+1yi−xiyi+1)

]
,

Finally, using the expression (11) it is easy to show that:

det | · | = Ji,i+1

Ji−1,i

{
xi+1(yizi+1 − ziyi+1 − yizi+1 + ziyi+1) + xi(yi+1zi+1 − yi+1zi+1)

}
= 0.

Thus the theorem is proved.

Note that, the specified geometric property allows simplifying the Hamiltonian (1).

Let us consider the set of spins in the spherical coordinate system (αi, θi, ϑi). In the

new coordinates for the two consecutive spins we can write the following relation:

sisi+1 = ||si|| · ||si+1|| = cos(αi − αi+1), (13)

where (αi, αi+1) ∈ [−π,+π] are the angles of corresponding spins in planes parallel to

plane Λ0.

Using (13) Hamiltonian (1) can be written in the form:

H = −P (θ, ϑ)

n∑

i=1

Ji,i+1 cos(αi − αi+1), (14)

where, as it follows from the proof of the proposition, θ = θ1 = ... = θn ∈ (−π,+π] and

ϑ = ϑ1 = ... = ϑn ∈ [0, π]. In addition, the pair of angles (θ, ϑ) defines the orientation

of a plane Λ0 in 3D space. It is natural to propose that P (θ, ϑ) is the homogeneous

distribution function from angles, which is normalized on unit
∫ ∫

P (θ, ϑ)dθdϑ = 1. For

finding the extreme value of the Hamiltonian (14) in nodes, let us consider the first

derivative by the angle αi:

dH

dαi
= P (θ, ϑ)[Ji−1, i sin(αi−1 − αi)− Ji, i+1 sin(αi − αi+1)]. (15)

It is obvious that derivatives of Hamiltonian (14) by angles θ and ϑ are identically equal

to zero. Now by equating the expression (15) to zero and solving it, we will get two

possible solutions for a stationary point:

αi+1 = αi − arcsin
[Ji−1, i

Ji, i+1
sin(αi−1 − αi)

]
, (16)

αi+1 = αi + π + arcsin
[Ji−1, i

Ji, i+1
sin(αi−1 − αi)

]
.
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Figure 1. The disordered 1D spin chain where spins lie in planes parallel to the plane

Λ0.

The condition on existence of these solutions in the region of real numbers is equivalent

to the following inequality:

− 1 ≤ Ji−1, i sin(αi−1 − αi)

Ji, i+1

≤ 1, or |Ji, i+1| ≥ |Ji−1, i sin(αi−1 − αi)|. (17)

Using two equations from (17) and substituting i instead of i− 1 we can find the value

of Ji−1,i sin(αi−1 − αi), and for both solutions result will be same:

Ji−1, i sin(αi−1 − αi) = Ji−1, i
Ji−2, i−1 sin(αi−2 − αi−1)

Ji−1, i

= Ji−2, i−1 sin(αi−2 − αi−1).

It is clear that by continuing this process we will get:

Ji−1, i sin(αi−1 − αi) = J1,2 sin(α1 − α2). (18)

Using (18) we can transform condition (17) to

|Ji, i+1| ≥ |J1,2 sin(α1 − α2)|. (19)

Let us note that the angles, α1, α2 and also the coupling constant, J1,2 in condition (18)

as an initial conditions of problem are specified. Finally we can write the condition of

the local minimum energy in the arbitrary i-th node:

∂2H

∂α2
i

= P (θ, ϑ)[Ji−1, i cos(αi−1 − αi)− Ji, i+1 cos(αi − αi+1)] > 0. (20)

4. The statistical ensemble of 1D disordered spin-chains

As it is easy to verify the solutions of equations (4) satisfying the inequalities (7) can

be of two types:

a. If Ji−1, isi−1 · si ≤ 0 and |Ji, i+1| > |Ji−1, i|, then there is only one solution, which

we denote by; s+i+1 (queen), and respectively,

b. If Ji−1, isi−1 · si > 0 and |Ji, i+1| ≥ |J0,1| · |s0 × s1|, then s
+
i+1 is the solution,

in addition there is another solution; s−i+1 (drone) under the condition that, |Ji, i+1| <
|Ji−1, i|.
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It is important to note that the solutions which are denoted with signs ”+” and ”−”

are characterized as follows, if the previous solution is the queen ”+” it is possible to

find up two different solutions s+i+1 and s
−
i+1, while after the drone

”−” the solution only

one s+i+1. Taking into account this we can construct solutions graphically in the form of

separate Fibonacci subtrees (F̂ sT i) (see Fig. 2).

The mathematical expectation of the branching’s number depending on the height

of F̂ sT i can be calculated by the following formula:

M(n) = M(n− 1)⌊ (2ξn)⌋ = ⌊2nη(n)⌋, η(n) = 1 + n−1
n∑

k=1

log2(ξk) > 0, (21)

where M(n − 1) the number of the branching at the height (n − 1) and ξk denotes a

random coefficient which belongs to the interval [1/2, 1]. Recall that for simplification

of the formula (21) designating the subtree’s number i is omitted. Since, an each

F̂ sT i consists of the set of nodes and the set of edges (the set of constants {J} =

[J1,2, J2,3, ...Jn−1,n] therefore it can be represented as a graph Gi(n) ∼= {gj(n), j ∈ M},
where gj(n) denotes a random string by length n which is characterized by Kolmogorov’s

complexity [22, 23].

Note that each Fibonacci subtree (graph) depending on its height n can be

represented itself as a random process. To compare them it is necessary to formulate

the appropriate criteria.

Definition. Two graphs with the same height; G1(n) and G2(n) are equivalent with

a given accuracy ǫ ≪ 1, if the following conditions take place:

1) The difference of Shannon’s entropy of the two Fibonacci subtrees (graphs)

satisfies:

|S1(n)− S2(n)| ≤ ǫ, S1(2)(n) = −
n∑

i=1

M
1(2)
i lnM

1(2)
i , (22)

where S1(n) and S2(n) denote the Shannon’s entropies of graphs G1(n) and G2(n), in

addition M1
i and M2

i are the branching numbers of corresponding graphs on the i-th

height,

2) the difference of average polarizations of two graphs in per one spin satisfies:

∥∥∥ 1
n

n∑

i=1

(
s
(1)
i − s

(2)
i

)∥∥∥ ≤ ǫ, (23)

where s
(1,2)
i =

∑
G1,2(i)

si denotes the total value of spins on the corresponding graph at

the i-th height,

3) the difference of the average energies of two graphs in per one spin satisfies:

1

n

n∑

i=1

∣∣∣ 1

m1

m1∑

j=1

J
(1)
i, i+1;(j)si;(j)si+1;(j) −

1

m2

m2∑

j=1

J
(2)
i, i+1;(j)si;(j)si+1;(j)

∣∣∣ ≤ ǫ, (24)

with m1 = M1
n and m2 = M2

n. Note that, the small parameter ǫ is chosen with

consideration of simulation accuracy. In the case when at least one condition from (22)-

(24) is violated, we will consider that G1(n) and G2(n) are inequivalent or independent.
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Figure 2. The six different Fibonacci subtrees (graphs) an each of which with the

height 8. All these graphs are growing from the same initial data (root) in result of

the six independent numerical experiments. The same symbols si and Ji,j on different

graphs can have completely different values.
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Thus for calculations of different physical parameters of the statistical ensemble,

it is necessary to take into account the contribution of all independent graphs (set of

graphs) {G(n)} = [G1(n), ...Gi(n), ...]. It is easy to verify that the system of equations

(4) which satisfies conditions (7)-(8) in each node can have up to two solutions, which

means that the number of solutions on the step n due to branching will be of order

M(n) ∝ 2n. In other words the calculation problem of statistics even of a single graph

algorithmically is a NP hard problem, since the number of solutions grows exponentially

at increasing of spins number. The estimation of computational complexity of statistics

for an one graph gives:

Kt(n) ∝ M(n)Ks(n), (25)

where Ks(n) denotes the Kolmogorov complexity of the string gj(n), while Kt(n) denote

the complexity of the graph Gi(n) ⊂ {G(n)}N . The computational complexity of the

{G(n)}N obviously will be Kens ∝ NM(n)Ks(n), where n is the height of graphs and

N the total number of graphs of the ensemble.

The mathematical expectation of random variable f characterizing the ensemble

{G(n)}N can be calculated by the formula:

E[f ] = f̄ =

∑N
i=1wif̄i∑N
i=1wi

, wi = Ni/N̄, (26)

where Ni and N̄ denote the number of strings of the graph Gi(n) and the total number

of strings in the ensemble respectively, in addition f̄i =
∑

Gi(n)
f denotes the expectation

of a random variable f on the Gi(n), which is calculated similarly to formula (26).

From the point of view of statistics, it is important to investigate the ensemble in

the state of the statistical equilibrium. This as a rule is realized at N >> 1 and when

the average value of random variable f almost surely converges to the expected value

[24]:

Pr
(

lim
N→∞

f̄N = f̄
)
= 1,

where f1, f2, ... are infinite sequence of Lebesgue integrable random variables with the

expected values E[f1] = E[f2] = ... = f̄ .

Lemma. If statistical weights of all independent graphs Gi(n) ⊂ {G(n)}N are

approximately the same it can be shown that the statistical weights of all strings

gj(n) ⊂ {G(n)}N are equal exactly. In this case we can use the law of large numbers

and simplify the expression (26) writing it as:

E[f ] = f̄ =
1

N

N∑

j=1

f̃j +O(N−1/3), (27)

where f̃j =
∑

gj
f denotes the expectation of the random variable f on a randomly

selected string gj(n) ⊂ Gi(n).

Note that the asymptotic convergence to the limit value in the expression (27)

occurs with accuracy ∝ N−1/3 due to the fact that the spins are three-dimensional.
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Figure 3. In the figure the left scheme describes NP algorithm while the right one

describes P algorithm which allows implementing calculations of the problem in a

polynomial time.

Thus, the computation of statistical parameters of the disordered spin system by

the formula (26) is algorithmically equivalent to solving of NP hard problem (the left

scheme in Fig. 3). In the case when the ensemble is in the state of statistical equilibrium

then the numerical simulation can be realized by the formula (27) and respectively by

the algorithm P (the right scheme in Fig. 3) having the polynomial complexity.

5. The numerical experiments

As it has been said, usually the problems of spin glasses are studied in the framework

of the partition function representation by using Monte Carlo simulation methods

which however does not allow to answer on many important questions of the statistical

ensemble. In particular an important problem is the fact that the spin glass in the state

of a statistical equilibrium generally speaking is in a metastable state and has some

distribution near the ground state. The system in this state is obviously impossible to

study by Monte Carlo methods, since these methods are adapted for calculations only the

ground state. To take into account the influence and contribution of this distribution on

different properties and values of parameters of a spin glass, it is necessary to implement

numerical simulation from the first principles of classical mechanics.

Hypothesis. If the Heisenberg 1D spin glass is in the state of the statistical

equilibrium, then the computational NP hard problem with the prescribed accuracy ǫ

can be reduced to the P problem.

As it is shown above at study of 1D spin glass we face with the problem of numerical

simulation of the set {G(n)}N which is a NP hard problem, since the number of branches

in each subtree depending on its height is growing exponentially. It should be noted
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Figure 4. In the left figure are shown the entropies of graphs (subtrees) depending

on their height (the red, blue, and green lines), while in the small frame are shown

curves of relations of corresponding entropies. In the right figure are shown curves of

the branching factor η(n) depending of the graph height.
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Figure 5. On the left picture are shown the distributions of strings’ energies of the

length 45 in the three different graphs (red, green and blue lines) which grow from the

same root and correspondingly the black curve, which shows the energy distribution

in statistically equilibrium ensemble {G(n)}N , where all graphs from one root are

growing. In addition, in tables adduced the important parameters that characterize

the corresponding distributions; the maximal and minimal values, the average value

of parameter µ =
∫
xP (x)dx and the dispersion σ. Note that the simulation has been

conducted by NP algorithm (see the left scheme on Fig. 3).

that at performing of numerical simulations with a same initial data in each time t we

find a new set of graphs {G(n)}tN (see Fig. 2), nevertheless we expect that in the limit

of statistical equilibrium all these sets must be identical in terms of statistical properties

and this is the assumption of the hypothesis. It is obvious, if we prove that all strings

in the statistical ensemble, {G(n)}N , have the equal weight then this allows to use the

law of big numbers and to reduce NP hard problem to P problem with the prescribed

accuracy.
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For the comprehensive study of graphs properties and their contributions to the

statistics of the ensemble, we will consider two possible cases; when graphs are growing

from one single root and respectively when they are growing from different roots.

At first let us consider one set of initial data Ω1
i (root) which includes orientations

of the first two spins of the chain and the coupling constant between them which are

generated randomly from the corresponding homogeneous distributions. Using the

system of recurrence equations (4), with consideration of inequality conditions (7),

we perform successive calculations of spin-chain. Recall that this system of equations

connects three consecutive spins, so that knowing the configuration of two previous spins,

we can generate from lognormal distribution [25] a random constant Ji, i+1 and exactly to

calculate a spin orientation in the subsequent node. Conducting the consecutive node-

by-node calculations on the n-th step, we generate a random graph Gi(n) ⊂ {G(n)}N at

internal nodes of which the spins are in local minima of energies. With regard to spins

in the external nodes, then it is supposed that they are in local minima of energies on

the basis of other considerations.

Performing the simulation using the NP algorithm shows that all three graphs which

grow from one root are independent by criteria (22)-(24). In particular the numerical

simulations show that depending on height of the graph, the Shannon’s entropy grows

an exponential, in all cases starting with n ≃ 15 (see the left picture on Fig. 4). The

ratios of entropies as follows from the Fig. 4, for the n > 15 they take values ∝ O(1)

that means in the ensemble {G(n)}N the weights of separate graphs are approximately

equal. The weight of individual branches in the statistical ensemble obviously will be

the inverse of weights of graphs to which they belong. In other words all branches

in the ensemble have the same weight. Note that the same picture is observed when

graphs grow from different roots. In this case all graphs are also independent and the

parameter of branching, at increasing of string length as in the previous case converges

to the value η(n) = 0.55 (see the right picture on Fig. 4). When the length of string

n < 15 then in the behaviour of entropy an oscillating character is observed (see Fig.

4), that is characteristic of the discrete systems and manifests itself in the form of size

effects. We carried calculations of distributions of different parameters on the example of

three graphs and also of the ensemble of graphs which grow from the same root. As the

calculations show, the energies distributions for three graphs and the ensemble, {G(n)}N
by criterion of Kullback-Leibler distance are close enough [26], while the distributions

of the coupling constants are sufficiently far by the same criterion (see Fig. 5).

So, we have shown that there are necessary and sufficient conditions for performing

of the lemma.

Now we can prove the hypothesis on the example of numerical experiments. We

calculated the characteristic distributions and parameters of the 1D spin glass, which

is in the state of the statistical equilibrium by two NP and P algorithms. It is obvious

that the comparison of the simulation results of the relevant distributions will allow us

to prove or disprove the hypothesis.

For the simulation of the problem, first of all we need to specify initial conditions
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Figure 6. The distributions of energies and spin-spin coupling constant. The

distributions of energies and spin-spin coupling constant. The black curves denote

the results of calculations using P algorithm, while beige curves are constructed in

result of calculations by NP algorithm.
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Figure 7. The distributions of polarizations in the ensemble of spin-chains by axes,

which are calculated using NP (beige curves) and P (black curves) algorithms.

in the form of a large number of independent configurations (roots), i.e. the large set of

the first two spins and coupling constants between them; {Ω1
1 = (s1

1, s
1
1; J

1
1,2)1, ...Ω

1
N =

(s1
1, s

1
2; J

1
1,2)N} = Ω̂ (see the two scheme on Fig. 3).

The steps of simulation using the algorithm NP are as follows (the left scheme on

Fig. 3). Using the initial data, Ω̂ we perform parallel calculations of all graphs Gi(n)

of the ensemble Gi(n) ⊂ {G(n)}N . Note that each of these graphs in terms of classical

mechanics, represents itself the set of classical trajectories that go out from one initial

value (root). Recall that this is due to the fact that spins are in states of local minimum

energy in all nodes of each graph with the exception of the set of nodes coinciding

with the origin and ends of a graph. The database which is obtained in the result of

simulation using NP algorithm allows to construct distributions of the main parameters
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of the statistically equilibrium ensemble.

The simulation by P algorithm (the right scheme on Fig. 3), is performed in a similar

way but with the difference that in this case instead of the set of graphs {G(n)}N we

grow the set of strings {g(n)}N . In this case from each graph we choose only one string

as the representative. Note, that the string (branch) gj(n) ⊂ {G(n)}N we grow by way

of randomly selecting only one solution in each node. In the result of parallel simulation

of the set of strings, we get the database which allows to construct the distributions of

main parameters of the statistical equilibrium ensemble {G(n)}N with the asymptotic

accuracy O(N−1/3).

We compared the results of numerical simulations on the example of the statistical

ensemble, {G(20)}5·104 consisting from 5 · 104 graphs by heights 20 with the ensemble

{g(20)}5·104 which consists from the 5 · 104 strings of lengths 20. As can be seen from

Fig. 6 and Fig. 7, in the limit of statistical equilibrium, the distributions of various

parameters of the statistical ensemble that have calculated using of two NP and P

algorithms coincide ideal.

Thus we have shown on the example of 1D Heisenberg spin glass, that the NP hard

problem with given accuracy may be reduced to the P problem and respectively the

hypothesis is proved.

6. Partition function

Now it is important to return to the definition of the main object of statistical physics,

i.e. to the partition function. It is well known that the multiparticle classical system in

the state of statistical equilibrium in the configuration space is described by the partition

function of type:

Z(β) =

∫
...

∫
exp{−βH({r})}dr1..., drN , β = 1/kBT, {r} = (r1, ..., rN), (28)

where H({r}) is the Hamiltonian of the system in the configuration space, kB and T

are the Boltzmann constant and temperature of the system respectively.

For the considered model the partition function is calculated exactly and has the

following form [21]:

Z(β, {J}) =
n∏

i=1

sinh(ai)

ai
, ai = βJi, i+1, (29)

where the coupling constant Ji, i+1 ∈ {J} = (J1, 2, J2, 3, ...Jn−1, n) is the random variable.

The average value of the partition function for the ensemble may be found after

averaging over the distribution of the coupling constant. It is often assumed that this

distribution is Gaussian:

W (J) =
1

σJ

√
2π

exp
{
−(J − J0)

2

2σ2
J

}
, (30)

where σJ is the variance and J0 is the average value of coupling constant.
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Figure 8. The free energy of the ensemble which is calculated by two methods. The

red curve is obtained at using of the expression (33), while the blue curve is obtained in

the result of calculation by the expression (32). Note that parameters of ε0 and σε are

found by the way of simulation of problem from first principles, whereas parameters

J0 and σJ chosen on the basis of the best approximation to the red curve.

After averaging of the expression for the partition function (29) by the distribution

(30), it is easy to find:

Z̄(β) =

∫ +∞

−∞

Z(β, {J})W (J)dJ =
K(β)√

2π

∫ +∞

−∞

(sinh(σJβx)

σJβx

)n

exp
{
−1

2
(x−x0)

2
}
dx, (31)

where x = J/σJ and x0 = J0/σJ , in addition K(β) denotes the normalization factor of

the partition function:

K−1(β) =
1

2J̄

∫ J̄

−J̄

(sinh(Jβ)
Jβ

)n

dJ =
1

ȳ

∫ ȳ

0

(sinh(y)
y

)n

dy, J ∈ [J̄ ,−J̄ ],

with J̄ > 0 and ȳ = J̄β. Recall that the coefficient K(β) is constructed in such way

that the Helmholtz free energy in the limit β → ∞ converges to zero.

The Helmholtz free energy per one spin in chain is calculated by the following

formula:

F (β) = − 1

nβ
ln Z̄(β). (32)

Since integration in the representation (28) is carried out by the full configuration space,

then obviously we take into consideration also contributions of spin configurations, which

are physically unrealizable. Let us note that usually, the measure of set of such spin

configurations is assumed to be equal to zero without any serious proof, that not only

groundlessly but in a number of cases may be incorrect. Taking into account the fact

that a set of strings describing the statistical ensemble in configuration space formally

can be represented as a trajectory of dynamical system, in the limit of ergodicity of

system (see [27, 28]), for the partition function the following representation may be

written:

Z⋆(β) =

∫ −n/β

−∞

P̄ (ε)dε, P̄ (ε) = c−1P (ε), c =

∫ 0

−∞

P (ε)dε, (33)
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where ε < 0 denotes the energy of 1D spin-chain, while P̄ (ε) the normalized energy

distribution of the ensemble. If the energy distribution (see Fig. 6) to approximate by

the Gaussian function (see (30)) then using the representation (33), for the free energy

attributable to a single spin is found the following analytical expression:

F⋆(β) = − 1

nβ
ln
{1

2

[
1− erf

(ε0 + n/β√
2σε

)]}
, (34)

where ε0 = µ < 0 (see Fig. 6) denotes the average energy of spin-chain in the ensemble

and σε respectively denotes the variance of spin-chains energy distribution. Comparing

Helmholtz’s free energies F (β) and F⋆(β) for the ensemble {g(20)}5·105 shows that

already at finite temperatures these curves diverge sharply (see Fig. 8 ). Furthermore,

near the temperature β ≃ 0.3, the ensemble of spin-chains exhibits a critical behavior,

since the free energy tends to infinity that is characteristic at phase transitions of

first order. The latter obviously connected with taking into account of contribution

non-physical configurations in the representation (28) and in formulas (29) and (30)

respectively.

7. Conclusion

We have studied 1D spin glass in the framework of Heisenberg’s nearest-neighboring

Hamiltonian. Using the Hamiltonian (1) we obtained the system of recurrent algebraic

equations (3) which together with conditions of energy minimum in nodes (5) allow to

implement node-by-node calculations and to construct stable spin-chains. It is proved,

that in the considered model the system of spins form only such spin-chains where into

in each spin-chain all spins lie in one plane, while the planes of two arbitrary spin-

chains, relative to each other can have an any angle. Another important property of

equations system (3) consists in the probability of branching of solution in each node

of 1D lattice. This leads to the fact that in result of consecutive calculations, from

the one initial condition (root) on the n-th step, we get a set of solutions (stable spin-

chains or Kolmogorov’s strings gi(n)) that form the Fibonacci subtree (random graphs

Gj(n) ⊇ gi(n)).

Thus when we say on the statistical ensemble we mean the set of random graphs

{G(n)}N , where N denotes number of graphs in the ensemble and correspondingly the

problem is consists in that to calculate all parameters and corresponding distributions

characterizing the ensemble.

It is shown that the computational complexity of an arbitrary graphGj(n) is the NP

hard of the order 2nKs(n), while complexity of the ensemble, with increasing number of

elements is increases linearly, {G(n)}N is the ∼ 2nNKs(n). The properties of random

graphs depending on their height are studied in detail (see Fig.s 4-5) by using NP

algorithm (see the left scheme on Fig. 3) and conditions at which the ensemble {G(n)}N
is in the state of the statistical equilibrium are formulated. We analyzed and proposed

the hypothesis that the 1D spin glass in the limit of statistical equilibrium may be

simulated by using P algorithm (see the right scheme on Fig. 3). Let us note, that all
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theoretical results and predictions have been confirmed with high accuracy in numerical

experiments that have been performed using NP and P algorithms (see Fig.s 5-7). It

is noteworthy that the simulation by the algorithm P not only ensures high precision

but also allows to find distributions of all parameters of the ensemble, including the

distribution of a constant spin-spin coupling (see Fig. 5).

In the work has been suggested a new representation for the partition function in

the form of one dimensional integral from the spin-chain’s energy distribution (see the

expression (33)). We have compared the Helmholtz’s free energies which were calculated

by using the usual (32) and new (34) representations. As it is shown (see Fig. 8),

already at finite temperatures the corresponding curves significantly different, moreover

near β ∼ 0.3 the ensemble of spin-chains demonstrates critical property, that usually

occurs at first order phase transitions. This is obviously due the fact that in the formula

(31), only such spin configurations are counted which satisfy to the basic principles of

classical mechanics (see expressions (3) and (5)).

Thus, the main advantages of developed approach are that we have received clear

answers, to all raised questions on the example of study 1D spin glass from the first

principles of the classical mechanics without using any additional assumptions. In

addition we showed that in the limit of statistical equilibrium (at ergodicity of the

statistical system), the initial NP hard problem is reduced to the P problem that allows

the simulation of spin glasses radically simplify.

The ideas lying in the base of developed approach enough are universal and allow

the generalization of model for a multidimensional case and at presence of external fields

[29].

Finally, a new formulation of the problem of spin glasses and disordered systems in

general can be very useful for study of a global problem, i.e the problem of reduction

NP to the P.
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