
 An Algorithm for Distributing Jobs in

 Claster Environment

 G. Chelidze, B.Mamporia, Nodari Vakhania

Affiliations: Tbilisi State University, Niko Muskhelishvili Institute of Computational Mathematics of

Georgian Technical University, Facultad de Ciencias, UAEMor Cuernavaca 62210, Mexico. E-mails

g.chelidze@tsu.ge , badrimamporia@yahoo.com nodari@uaem.mx

 Abstract. Cluster scheduling serial and parallel jobs need to be distributed among parallel CPUs. The

corresponding combinatorial optimization problems which arise here are intractable (NP-hard). Hence one

cannot expect to "solve" such problems optimally. Besides, the Objective criteria are often contradictory

(there might be no single criterion). Here we propose a heuristic method that can be used for the

distribution of jobs on parallel CPUs with the objective is to minimize CPU idle-time. Our algorithm works

on non-identical CPUs when the speed of a CPU is job-dependent.

 A cluster scheduler aims to distribute jobs in a fair manner while optimizing overall cluster

efficiency, e.g., the idle CPU time. In CPU time sharing systems the system must decide which of

the arriving jobs to assign to the processor and when. The jobs may arrive over time or, in case of

the scheduled maintenance and other scheduled computer services (such as operating system

updates), job arrival time and its (approximate) processing time are known in advance.

Here we deal with the latter kind of scenario, where our objective is to minimize the overall job

processing time, which also yields the minimal processor idle-time. We consider a general model

rarely dealt with in cluster scheduling when CPUs are non-identical and their speed is job-

dependent, i.e., a CPU may work fast or slow depending on the type of request assigned to it. In

the literature such parallel processors are referred to as unrelated. In practice, non-identical CPUs

may well form part of the same cluster when it is gradually upgraded with new faster CPUs (while

the old slower ones are also kept).

The scheduling problems that arise in cluster environment are mostly NP-hard. Hence, one

naturally thinks on an approximate solution method. In this paper, we propose a heuristic

approximation algorithm for the solution of the unrelated CPU time sharing problem. Before we

describe our generic problem formally, we give a brief overview of the related problems.

 In general, multiprocessor scheduling problems deal with a group of parallel processors that

can process a given set of jobs {1,2,…,n} under certain restrictions. A group of identical processors

processes every job for the same time, whereas in the uniform processor environment, processor

iM has its own speed is (the same for all jobs).

mailto:g.chelidze@tsu.ge
mailto:badrimamporia@yahoo.com
mailto:nodari@uaem.mx

hence the job processing times must be given individually for each processor. Scheduling unrelated

parallel processors non-preemptively with the objective to minimize the makespan, that is, the

maximum job completion time, commonly abbreviated as max// CR (see Graham et al. [8]), is

among the heaviest strongly NP-hard problems. The best known polynomial approximation

algorithm for this problem has an asymptotic performance ratio 2 (the performance ratio of a

schedule is the ratio of the objective function value of that schedule to the optimal objective

function value). For many NP-hard scheduling problems, a strong restriction on the job processing

times may convert the problem to a polynomially solvable one. For max// CR however, the problem

is known to remain NP-hard even for two allowable integer job processing times p and q, p<q, and

q 2p, abbreviated max/},{/ CqppR ji (see Lenstra et al.[12]). The authors in [12] have shown

that the version with p=1 and q=2 can be polynomially solved using a reduction from a version of

the assignment (matching) problem. Later Vakhania et al. [15] showed that a similar kind of

reduction for times p and 2p is not possible, and have proposed another polynomial-time

algorithm using linear programming thus showing that max/}2,{/ CpppR ji is the maximal

polynomially solvable special case of max// CR with restricted job processing times (note that for

unrelated processors, at least two possible job processing times must be specified as otherwise we

will be brought to the identical/uniform processor environment). The authors in [15] have also

shown that the problem max/},{/ CqppR ji can be solved in polynomial time with an absolute

worst-case error of q. For a much simpler identical processor environment, the most scheduling

problems still remain NP-hard. For instance, the problem of scheduling already two identical

processors with the objective to minimize the makespan is NP-hard. However, the approximation

in polynomial time for scheduling identical and also uniform processors can be done efficiently. An

O(n\log n) MULTIFIT algorithm for the problem max// CR gives a performance ratio of 13/11 for

identical processors and of 7/5 for uniform processors (see Friesen [3]}, Yue [16], Friesen \&

Langston [4]. There also exist polynomial approximation schemes for uniform processors, see

Hochbaum and Shmoys [9]. Scheduling problems on identical and uniform processors with

restricted job processing times have been also studied. Among such problems ones with unit and

equal-length jobs are well studied (see, for example Kravchenko and Werner [11]). The first

polynomial-time approximation algorithm for the problem max// CR was proposed by Ibarra and

Kim [10] with an unattractive performance ratio of m, and a better polynomial-time algorithm with

a performance ratio within m2 was suggested by Davis and Jaffe [1]. Potts [13] gave an

approximation algorithm with the performance ratio 2, which is polynomial in n and exponential

in m. One decade later (and more than two decades ago), Lenstra et al. [12] have developed the

first polynomial-time algorithm (in both the number of jobs n and the number of processors m with

the same performance ratio 2. The authors in [12] have also shown that no polynomial algorithm

with a performance ratio of 1.5 or less may exist for the problem max// CR (unless P=NP). The

algorithm is based on rounding of a fractional solution obtained by linear programming. Later the

rounding approach was used in a better performance algorithm with the ratio 2-1/m Shchepin \&

Vakhania[14], and it was shown that no rounding-based algorithm can give a better performance

ratio than 2-1/m Ebenlendr et al.[2] have proposed a special case of scheduling on unrelated

processors in which each job can be assigned to at most two processors. Their 1.75-approximation

algorithm also applies the rounding of the fractional solution obtained by linear programming.

Even for this restricted version, it remains NP-hard to find a better than a 1.5-approximation

algorithm. As to the heuristic algorithms without a guaranteed performance for our problem

max// CR , we just mention a few recent papers with interesting results. If any job can be processed

on any processor, we refer e.g. to the works by Fanjul-Peyro and Ruiz [5],[6], and if jobs can be

processed only on particular processors, we refer the reader to [7] and the works cited in these

papers.

 Let),,(21 njjjJ are jobs, mMM ,,1 are processors. jM has his own speed is (the same

for all jobs). Assume, that the speed of the slowest processor 1M is 1. Let is is ordered such that

is is increased by i . Let the processing time of the job j by the processor iM be ijp . If the speed of

the job j by the processor 1M is jp1 , then
i

j
ij s

p
p 1 . We have the matrix

mnmm

n

n

ppp

ppp

ppp

21

22221

11211

 , (1)

 where mjjjinii pppppp 2121 ; for all mi ,,2,1 and nj ,2,1 . Let

),,,(21 mAAA is the partition of J , such that iA , lk AA , JAi . Denote by

),,,({ 21 mAAA iA , lk AA , JAi } the set of all such partitions of J . Let

iij Aj

iji pS . Consider

 lk

AA

SS
lk

maxmin
,

. (2)

The job scheduling problem is to find the partition),,(00

2

0

10 mAAA such that

lk SS
lk AA

max
00 ,

lk

Alk

SS
i

maxmin
,,

. (3)

Then, the optimal processing time of performance of the jobs),,(21 njjjJ is

 max

T
mi

 0

ll Aj

ilp .

It is obvious, that

m

p
j

mj

 T 1
1

m

p
j

j

.

We have also

m

p
j

mj

m

p
j

jm)1(

m

p
j

j2

m

p
j

j1

.

Consider the set),,,({ 21 mAAA iA , lk AA , JAi }. For the simplest case,

when the sets)1(21, mAAA contain one element each of them and mA contains 1mn

elements, the quantity of such elements in are (n-m+1)!. That is, the quantity of elements of

is huge (
)1()(

2

1

21

1

m

m

m

m

m

mn

m

mn

nmmm

m

n CCC

). Our goal in future development is, using the matrix (1), to

construct the discrete probability measure P on , such that for B ,)(BP will be the

probability of the event “ B -contains the optimal partitions of Jobs 00

2

0

1 ,, mAAA .” Then we will

seek the heuristic algorithm on “eventless” B with probability near to 1. Another direction of

our approach for the future development is the following: analyzing the matrix (1) we hope to

receive the approximate value of T . Then using the Monte-Carlo method, simulate the process on

the probability space to receive the partition of jobs
mAAA ,, 21 such that for

max

iA

T

iAj

ijp , the inequality TT holds for sufficiently small .

 At the end of our presentation we give the one simple heuristic algorithm to schedule jobs to

the processors: consider the matrix (1). Let For the nj job choose the processor mM , for the 1nj

job choose the processor 1mM and so forth, for the job mnj choose to the processor 1M .

Consider the corresponding processing times)(1),1)(1(,, mnnmmn ppp . Let us ordered them in the

increasing order and denote by),,(11

2

1

11 mqqqQ this schedule and the corresponding processing

times on the processors denote by

)1()1()1(
11

2
1
1

,,,
mqqq

SSS .)1()1()1(
11

2
1
1 mqqq

SSS . For the job)1(mnj

choose the processor 1
1q

M and consider the corresponding processing times

)1()1(

)1(

)1(
11

2
1
1

1
1

,,,
mqqmnqq

SSpS

 . Let us again ordered them to the increasing order. Let

),,,(22

2

2

12 mqqqQ be the this schedule and denote the processing times in such a way:

)2()2()2(
212

2
2
1

,,,
mqqq

SSS .)2()2()2(
2121

2
2
1 mqqq

SSS . For the job)2(mnj choose the processor 2

1q . We have the

following processing times on the processors:)2()2(

)2(

)2(
22

2
2
1

2
1

,,,
mqqmnqq

SSpS

 .
Let us again ordered

them to the increased order. Let
),,,(33

2

3

13 mqqqQ
 be the corresponding schedule and denote by

)3()3()3(
33

2
3
1

,,,
mqqq

SSS the corresponding processing times on the processors. And so forth, for the job
1j

choose the processor mnq

1 and at lust, we have the schedule),,,(21

mn

m

mnmn

mn qqqQ

 and the

following processing times for the processors)()(

1

)(
1

211

,,, mn

q

mn

qq

mn

q mn
m

mnmnmn SSpS
 .

.

References

[1]. E. Davis and J. M. Jaffe. Algorithms for scheduling tasks on unrelated processors.

J. ACM 28, 721 - 736, 1981.

[2].T. Ebenlendr, M. Krï¿½\' al and J. Sgall. Graph Balancing: A Special Case of Scheduling

Unrelated Parallel processors. Proceedings of the nineteenth annual ACM-SIAM symposium on

Discrete algorithms, 483-490, 2008.

[3]. D. K. Friesen. Tighter bound for the MULTIFIT processor scheduling algorithm SIAM J. Comput.,

13, 170-181, 1984

[4]. D. K. Friesen and M. A. Langston. Bounds for MULTIFIT

scheduling on uniform processors . SIAM J. Comput, 12, 60-70, 1983

[5]. L. Fanjul-Peyro and R.Ruiz. Size-reduction heuristics for the unrelated parallel processors

scheduling problem. Comp. Oper. Res., 38, 301 -- 309, 2011.

[6].L. Fanjul-Peyro and R.Ruiz. Iterated greedy local search methods for unrelated parallel

processor scheduling. Eur. J. Oper. Res., 207, 55 -- 69, 2010.

[7].L. Fanjul-Peyro and R.Ruiz. Scheduling unrelated parallel processors with optional processors

and jobs selection. Comp. Oper. Res., 39, 1745 -- 1753, 2012.

[8].R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan.

Optimization and approximation in deterministic sequencing and scheduling: A survey.

 Ann. Discr. Math., 5: 287 -- 328, 1979.

[9].D. S. Hochbaum and D. B. Shmoys. A polynomial approximation

scheme for scheduling on uniform processors: using the dual approximation

approach", SIAM J. Comput. 17, 539-551, 1988

[10].O.H. Ibarra and C.E. Kim. Heuristic algorithms for scheduling independent tasks on non-

identical processors. J. ACM 24: 280 -- 289, 1977.

[11].S.A. Kravchenko and F. Werner. Parallel processor problems with equal processing times: A

survey. J. of Sched., 14, 435 -- 444, 2011.

[12] J.K. Lenstra, D.B. Shmoys and E. Tardos. Approximation algorithms for scheduling unrelated

parallel processors. Math. Progr., 46, 259 - 271, 1990.

[13].C.N. Potts. Analysis of a linear programming heuristic for scheduling unrelated parallel

processors. Discr. Appl. Math., 10, 155 - 164, 1985.

[14].E. Shchepin and N. Vakhania. An optimal rounding gives a better approximation for scheduling

unrelated processors. Oper. Res. Lett., 33, 127 - 133, 2005.

[15]N. Vakhania, J.Hernandez, F.Werner. Scheduling unrelated processors with two types of jobs.

 International Journal of Production Research Vol. 52, No. 13, p. 3793 - 3801, 2014

(http://dx.doi.org/10.1080/00207543.2014.888789).

[16]M. Yue. On the exact upper bound for the multifit processor scheduling algorithm. Ann. Oper.

Res., 24, 233-259, 1990.

