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Abstract. On investigation of the turbulent movement, the main problem is to give the velocity as the 

random process  at any fixed  point of  the environment. According to our approach, the quantity  of  

pulsations  of  the velocity at any fixed point is a Poison process;  the random process of  the pulsation part 

of the velocity  is a  Levy  process.  It follows  that the velocity  of  the turbulent movement is    a random 

element in suitable functional space.  The theoretical  achievements in development of  the  turbulent 

movement and experimental  data is the  foundations  to give the covariance operator  of  this random 

element and the character  of  the randomness on the linear  functionals of  this random element.  After 

preparing  these  necessity  we can consider  the corresponding  stochastic differential equation of the 

trajectory in turbulent environment, the solution of this equation  is the problem of  future developments. 

Another  problems are  to give the approximative solution as a random process of this equation  and to 

simulate in  a computer  the random process for  various  covariance operators to find the real, close  to the 

objective  account.  Current advance of the computation technology and promised to our Institute high- 

capacity cluster  give birth  to hopes  to receive an acceptable  model of the turbulent movement. 

             

            Last unsolved problem of classical physics (`Is it possible to make a theoretical model to describe the 

statistics of a turbulent flow?') is the turbulence movement. Therefore, the interest of development of this is 

great. There are enormous quantity of literature  concerning to this problem (see [2],[4],[8],[9]). The basic  

equations governing the motion of a fluid are  known as the Navier –Stokes equations . SThe origin of  the 

Navier-Stokes equations dates back to the late nineteenth century when Osborne Reinolds (1895) published 

results from his research on turbulence. Navier –Stokes equations are very complex due to the fact that 

turbulence is rotational, three-dimensional and time-dependant. The Navier-Stokes equations are the most 

general form of the laws governing fluid motion and contain all of the behavior  which we can find  in real 

problems. In practice are developed appropriate approximations  which will let derive solutions for 

particular cases and thus find out something about the behavior of  real turbulent systems.   The concept of  

turbulence modeling is far less precise due to the complex nature of turbulent flow. Considering the 

enormous capacity of actual computers, it is possible to consider that high precision numerical simulations 

of the Navier-Stokes equations can solve the problem of  turbulence. Unfortunately, with the current 

capacity of computing  power, the attempts of direct numerical simulation of  Navier-Stokes equations have 

been limited to low Reynolds numbers and  simple geometries . Despite the current advance of  the 

computation technology the possibility of using numerical simulation  for flows with high Reynolds numbers 

in practical applications  is still surely distant. 

mailto:badrimamporia@yahoo.com


  Before we describe our approach,  we want lightly touch to analyze  the history of development  of the 

Brownian motion. The     mathematical theory of the Brownian motion was produced by A. Einstein in 1905 [6].   

According to Einstein, let );,,( tzyxP  be the probability density of finding a Brownian particle at a point zyx ,,  

at the time t. The density  satisfies the diffusion equation 
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  and D  is  a coefficient of diffusion. 

There is another,  purely  probabilistic approach  of  description  of  the Brownian motion by the Gaussian  

process  with independent increments. This approach is confirmed by   the  following  point of  view:  let tx  

be the axis coordinate of    the particle for the moment of time t . Suppose that 0x is   equal to 0 . As in the 

interval of time  ],0[ t  micro displacement of the particle  is the sum of many almos    independent       parts 

( suppose that after collision  the  velocity  vanishes rapidly because of viscosity), by the Central  Limit   

theorem,  it is natural to assume, that tx  be a Gaussian    random  variable; by the symmetry, the mean 

0tEx ; by  the homogeneity, the dispersion    )()( 2 sfxxE tst    does not depend  on t , which gives  

cssf )( . Therefore, we  receive the definition of a homogenous Brownian    motion (Wiener process) 

],0[)( TttW   with the correlation     ,   ),min( stcWEW st  , ],0[, Tst  , T  is    a                                                        

is      continuance of  the observation.  In case 1c , we have a    standard Brownian motion (standard 

Wiener process). Wiener processes  are widely  used as in development of many fields of pure Mathematics, 

also  in development of many applied sciences.  

      As in the Brownian motion case, there is pure probabilistic approach  in development of  turbulent 

movement. This approach has not a long history.  In [9] is given the opinion that  if  the Brownian motion  is 

described by the  three  dimensional  random process, to describe the turbulent movement  it  is necessary  

to use the random process with values in a infinite-dimensional functional space. Here we want to mention 

that in a turbulent movement the displacement after  the “collision” is sizable and before  the next  

“collision” the velocity obtained  after  the last  “collision” does not vanish. Therefore,  in difference of  the 

case of the  Brownian motion, the trajectory of the turbulent movement may  not be considered  as  a 

process with  independent increments. 

       Now we give the description of our approach:  let us fix  a point x  in a turbulent  fluid field.  At this 

point, we have the forward (mean) motion  with the velocity ),( xtV  at the moment t  (we can assume that 

this value of velocity is given), the Brownian motion,  which is negligible and the impulse of velocity ),( xt , 

which arises from the  turbulent “collision”. The main point  of our approach consists to the assumption that  

the quantity  of such impulses till the moment t  is the integer-valued random process with independent 

increments, which we denote by ),( xtP . Consequently,  in  the point x  of the turbulent environment, at 

the moment of time t , we have the velocity  ),(),( xtxtV  .  The impulse ),( xt  at the fixed  point x  is 

a random variable, as well as  the quantity of such impulses in the time interval ),0( t  is a random variable.  

Moreover, these quantities in nonintersecting time intervals are independent  . According to the theory of 



the random processes with independent increments, ),( xtP  is a Poisson process. Among the pulsations of 

impulses, there are many weak pulsations. The values of  the impulses  of such pulsations  of the velocity  

rapidly vanish by the reason of viscosity. Denote by   the maximal value of such impulses in the pulsation 

of  velocity. The value of   depends on  the viscosity of  the turbulent environment. Decompose the 

random  process ( ),( xtP ) Tt  by  the  following two component: ))(,())(,(),(   xtPxtPxtP , 

where ))(,( xtP  is the quantity of such pulsations of  the vector of  velocity,  the value of  which is less 

or equal  to . ))(,( xtP  is the quantity of  the rest pulsations. Just such pulsations generate the 

turbulence. Let us consider them one by one.  

The velocity of the first type pulsations quickly vanishes by the reason  of viscosity; therefore,   the   

displacement of the particle, caused  by  the velocity of first  type, is the sum of many almost independent 

parts. Therefore, the sum of such displacements up to the moment t , as the sum  of independent, 

identically distributed random variables, is a Gaussian random variable. Likewise  the displacements for the 

disjoint time intervals one may consider to be independents. Thus,  the displacement  caused by the small (

))(,( xtP ) pulsations  may be described  by the random process of the  Brownian movement (Wiener 

process) or, rather, by the stochastic integral with respect to the Wiener process  
t

dWx
0

),(  , where  

3],0[:),( RSTxt   depends on the properties of  the environment  at the point x  and  time  t . 

Likewise  this value  depends on the scale.  This is the  well  known  model to describe  the molecular 

diffusion. 

      Let now consider the pulsations, the quantity of which is ))(,( xtP . As  we mentioned above, such 

pulsations generate   turbulence. Consider the set  },:{ 3  xRxxU . Let  )(U -be the Borel  

algebra on  U . Denote by  ),,( Atx , )(UBA , the quantity of pulsations of the velocity with values  in 

the set  A  up to the moment  of time t .  ),,( Atx  is a Poisson process (see [13], Teor. 1 of par.14). In 

particular, ),,( Utx ))(,( xtP .  ),,( Atx  is  characterized by the  parameter (mean) ),,( Atx . In 

the case  when UA  , we will use ),( xt instead of ),,( Uxt . The quantity of  ),,( Atx  may be 

estimated by  statistical observations. Denote  






y

t dytxyx ),,()( . ( )(xt ) Tt  is a process with 

independent increments (see [13], par. 13). It is the sum of the  independent  random pulsations of the 

velocity the quantity of which  is  ))(,( xtP . The value  )()( xx st   is the sum of values of pulsations 

of the velocity in the  time  interval ( ts, ) at the point x .  The value )(xd   is the value of pulsation of the 

velocity at the moment of time   , at  the point  x of  the turbulent environment.  

   Consequently, we have a formula of  the velocity  at the point x  of  the turbulent environment at the  

moment of time t:   )(),(),(),( xddWxtxtVxtu tt    The value of  pulsation of  the velocity, which 

appears at the random moment of time,  is a random vector  in 3R . This random vector   depends on the 

mean velocity ),( xtV  at the point   x  in the moment t , and we can receive  it by  the statistical 

observation. For different values of  x  and t  the values of the velocity are in certain correlation to each 

other. If  two points are sufficiently close to each other, then at the same moment of time the coefficient of 



the correlation of  values of  the velocity of  these points   is near  to one.  If the coefficients of  the 

correlations is near  to one of  the points of the large mass of  the turbulence environment, the   turbulence 

effect with high  Reinolds number is impressive. To give these correlations for all points of the turbulent 

environment for any  time ( and different times)  is the main problem in developing  the turbulent 

movement. Otherwise,  it is the problem to receive the random element with values  in  certain functional 

space.   

   Suppose, that the turbulent environment  is a compact set S  in  3R .  As   the  velocity at any fix point of 

S  is a right  continuous  function, which has the left limit by the argument t ,  it is natural to take as a 

corresponding  working space  the  space  ))(],,0([ SCTD , where  )(SC  is the separable Banach  space of 

continuous functions  from  S  to 3R .  (it is clear to assume the continuity by x  of the value of the impulse 

of  velocity for every fixed  moment of time t .  Recall  that, in general,  for any  Banach space X ,    

)],,0([( XTD  is the space of  right-continuous functions  defined  in ],0[ T  with  values  in X ,  which have  

left limits). In the space )],,0[(],0[ 1RTDTD    A. V. Schorokhod introduced a special metric, as it is 

impossible to introduce  any   natural norm  in it to safe separability of the space . But if we fix a countable 

number of points Q  in  ],0[ T , where (only) we can  have discontinuity, the  space  ))(],,0([ SCTDQ with 

the norm )(sup ],0[ tff Tt  is a separable Banach space. We observe a turbulent  movement  in 

rational moments of time; therefore, it is natural to consider  the Banach space of the right-continuous  

vector functions with left  limits, which may have a discontinuity only in the rational points. Denote this 

space by ))(],,0([ SCTDQ , where Q  is the set of rational numbers in ],0[ T . Let   ))(],,0([* SCTD Q be  

the conjugate space of  the separable Banach space ))(],,0([ SCTDQ . We will consider the  subset   of 

the  conjugate space ))(],,0([* SCTD Q , where for all f ))(],,0([ SCTDQ , ],0[ Tt   and )(SCx , 

),(, , xtff xt   ; the symbol .,.   denotes dual pairing.     is a total subset of the space 

))(],,0([* SCTD Q (if ),(, , xtff xt   =0 for all ],0[ Tt   and )(SCx , then  0f

))(],,0([ SCTDQ ). 

     Remark. The  symbol .,.  is not here dual pairing symbol in ordinary sense as ),(, , xtff xt    is not  

real valued function  because   3),( Rxtf  . Further we will use this symbol  in both---ordinary and above 

mentioned sense according to the context of  the sentence. 

        Consider now the last member of the  equality (4) --- SxTtxt  ],,0[),( . For all fixed Sx , )(xt

may be form  from the  compound  Poisson process (see [1], example 2) indeed: let )(: SCY   be a 

random element with the law   on the Borel  -algebra on )(SC  , such that  xY ,  is a random vector   

with   xY , , where *)(SCx  is a linear continuous functional on )(SC , )(, xff x    for all 

)(SCf  and Sx .  xY ,  is a random pulsation of velocity at the point x , which  promotes  

turbulence. To construct and develop such  a random element is one of the main problems in the 

development of the turbulent movement. Experimental results, as well as the theoretical achievements like 

Kolmogorov’s theory and other advances (see e.g. [7] ) will be used to construct the random element  Y . 



The existence of  such  a random element is another problem from the field of probability distributions on 

linear spaces.  Let  now ,,, 21 YY  be the independent copies of  the   random element Y . Denote by  

),( xtn  the quantity  ))(,( xtP  of the pulsations of  velocity,  ),( xtn := ))(,( xtP . Consider the 

following  random process 

                 xxxtt YYLxL  ,,:,:)( 21  

 xxtnY ,),(
.  

 For all fixed Sx , )(xLt  is a  compound 3R  valued Poisson process. It is easy to show  that we have the 

following  equality:  ,,,,)()( ),(21  xxtnxxtt YYYxLx    where ),( xtn  is the random  

variable  distributed by Poisson law  with mean   ),( xt .   )(xt  has no physical sense, but  

)(:)()(lim 0 xdxx ttsts   is  the value of the velocity impulse of the particle in the point x , at  the 

moment of time t . Therefore, we can  rewrite  the equality  (4)  in the following way: 

                                 )(),(),(),( xdLdWxtxtVxtu tt   .                                                                      (5) 

 For simplicity, the Wiener process we can take one dimensional and consider the stochastic integral from 

Banach space valued  function by the one dimensional Wiener process (see [11]).  We can consider the  

process ),( xtu as a Levy  process in a separable Banach space )(SC  with the characters  

)),(,,)(),((

1

  xtRdxxxt
B

  where R is a covariance operator (see [14]), that is,  the positive and 

symmetric linear operator )()(: * SCSCR  , ),(),(, ytxtR yx   , 1B is the ball in )(SC  with 

the radius 1(see [1]). 

   Remark 1. . Above, In our verbal  proof,  we receive independence of  random variables  

 xxtnxx YYY  ,,,,, ),(21   for all fixed Sx , which does not give independence of the random 

elements ,, 21 YY  (see [3]). In real  turbulent environment we have dependences  in a probability sense  

(high correlations) of random variables  xiY ,  and  yiY , for all  Syx , , close to each other. As well 

as, we have dependence of the random variables  )(xdLt and )(ydL tt  . Therefore, in our situation,  to 

give  the correlation operators (see definition in[14]) of these  random elements is the one of the main 

problems to construct the model of the turbulent movement. Therefore, The independent copies of  the   

random element Y  we considered above only for comprehensibility of the model as we have independence 

of the random variables   xxtnxx YYY  ,,,,, ),(21  .  

     Note  that  there is considered in the paper [15]  the model of  one dimensional turbulent movement, 

where the Poisson process is used to describe the pulsations of velocity. .  It is proposed in [12] a stochastic 

differential equation framework for modeling the timewise dynamics of the main component of the 

velocity .  



          Now, let us  try to describe the trajectory of the particle, moving in a turbulent  fluid field.   If the 

particle  is in the point y  at the moment of time t ,  the  pulsation of the velocity , received  the particle at 

the moment of time    , )( t ,  vanishes for the moment of time  t . This occurrence we can describe by 

the function )](exp[   t . The coefficient   characterizes the viscosity of the environment. That is,  the 

value )](exp[   t )(xd   is  the  part of the velocity at the moment of time t , which   the particle  

obtained at the moment of time  , when it appeared at the  point x . Let  the particle   in the turbulent 

environment at the time moment 0t  be at the point 0x  and  tX  be the position of the particle  at the 

moment t , then, according to the above mentioned assertion, we have the following stochastic differential 

equation for the trajectory  tX : 

 tttt dWXtdtXtVdX ),(),(   )()](exp[
0

 Xdt

t

 

 

,                   (6) 

with the initial condition 00 xX  . Where  )),(],,0([))(],,0([),( SCTDSCTCV Q   

)),(],,0([))(],,0([),( SCTDSCTC Q  , ))(],,0([:))(( SCTD  and ],0[)( TttW   is  a  

standard one dimensional Wiener process. The corresponding integral form of the equation (5) gives the 

formula of the trajectory  of the particle: 

  

t t

ssst dWXsdsXsVxX
0 0

0 ),(),(   

  

t s

dsXds
0 0

)()](exp[                     (7) 

   The stochastic integral  

t

sdWsV
0

),( is a )(SC -valued random process;  the member of  the  equation  (7)-

--  
t

ss dWXsV
0

),(   we can consider as a generalized stochastic integral  

t

sX dWsV
S

0

),,(  (see [11]). As 

for integral   

t s

dsXds
0 0

)()(exp[  , close to this stochastic integral is considered in [1].  The 

theoretical aspects  of the stochastic differential equation (7) is the problem for future developments. As 

well as we will consider the approximate methods of the solution  of this equation. 
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