A Novel Active Soft-Switching Converter with loss-less Snubber for MTEM Electromagnetic Transmitter

X. H. Wang, Y. M. Zhang, J. X. Gao
Beijing University of Technology, Beijing, China(100124)

1. Introduction

Multi-channel transient electromagnetic (MTEM) is an artificial source electromagnetic detection method. The current transmitters have many problems, such as low power density, low efficiency, and narrow dynamic range. These properties cannot meet the actual needs of geological explorations. In this paper, an improved auxiliary circuit for PSFB converter used in MTEM transmitter is proposed, which guarantees the ZVS of the main switches for the entire range of the load. The auxiliary windings ensure the soft-switching of the auxiliary switches, and the cut-off diodes eliminate the current circulation in the auxiliary circuit. Meanwhile, the loss-less snubber in the output rectifier suppresses the voltage ringing. The efficiency of the proposed converter is greatly improved.

2. The circuit topology and operation modes

The topology of the improved converter is shown in Fig. 1. And the key waveforms are shown in Fig. 2.

Figure 1. Topology of the improved converter.

Figure 2. Key waveforms of the proposed converter.

Mode 1 ($t_0 < t < t_1$): The primary current i_p is to charge the resonant capacitor C_1 and discharge the capacitor C_2.

Mode 2 ($t_1 < t < t_2$): The voltage V_{AB} is zero and the diode D_2 is still in the freewheeling state, the current i_p is equal to the reflected filter inductor current i_L.

Mode 3 ($t_2 < t < t_3$): The current flows through the devices Q_{3a}, D_{Sat}, L_{R2}, T_2, and Q_4 to charge L_{R2}.

Mode 4 ($t_3 < t < t_4$): The current i_p and i_{L2} are both used to charge C_4 and discharge C_5. The voltage of C_1 is reduced to zero and the diode D_3 is turned on.

Mode 5 ($t_4 < t < t_5$): The current i_p and i_{L2} flow through the diode D_3 to ensure Q_4 realizes ZVS.

Mode 6 ($t_5 < t < t_6$): The current i_p drops to the zero-crossing at t_5 and the switches Q_3 and Q_5 provide the access for the current i_p.

Mode 7 ($t_6 < t < t_7$): The transformer leakage inductor and the parasitic capacitor of the rectifier diodes resonates with the clamping capacitor C_4 to charge C_5.

Mode 8 ($t_7 < t < t_8$): The clamping switch Q_5 is turned on at t_7, the direction of the resonant current i_{CS} remains unchanged. The current i_{CS} decreases to zero at t_8.

Mode 9 ($t_8 < t < t_9$): At t_8, the current i_{CS} is increasing in reverse direction, and the clamping capacitor C_5 is in the discharge state. The energy absorbed by the snubber in mode 7 and 8 is fed back to the load.

3. Results

A. **Simulation results**

Figure 3. The main waveforms of the proposed converter in the passive soft-switching mode.

By comparing the voltage of V_{AB} in Fig. 3 and Fig. 4, when the output power is 6.1kW, the lagging switches cannot achieve ZVS in the passive soft-switching mode. When the auxiliary switch is turned on, the lagging switches realize ZVS.

B. **Experimental results**

Figure 5. The main waveforms of the proposed converter in the passive soft-switching mode.

By comparing the waveforms of V_{AB} in Fig. 5 and Fig. 6, when the output power is 5.0kW, the lagging switches achieve ZVS in the active soft-switching mode. The simulation and experimental results are consistent.

4. Conclusions

In this paper, a novel active soft-switching converter with loss-less snubber for the MTEM transmitter is proposed.

Firstly, the topology of the active soft-switching converter with loss-less snubber is introduced and the 18 operating modes of the proposed converter are analyzed in detail. Secondly, the design processes of the converter are presented. Finally, a Saber simulation is carried out and a 60kW prototype is proposed. The theoretical analysis, the simulation results, and the experimental results are consistent and have verified the correctness and validity of the proposed converter.

Contact email: wangxuhong0909@163.com