CERN, 29.03.2017

Julien Lesgourgues

Institut für Theoretische Teilchenphysik und Kosmologie (TTK), RWTH Aachen University

CERN, 29.03.2017

Julien Lesgourgues

Institut für Theoretische Teilchenphysik und Kosmologie (TTK), RWTH Aachen University

Observables derived from first principles

GR+QED, Integration of linearised Einstein + Boltzmann

Observables derived from modelling of complex phenomena

non-linear simulations, phenomenological fits & scaling laws

Observables derived from first principles

GR+QED, Integration of linearised Einstein + Boltzmann

Observables derived from modelling of complex phenomena

non-linear simulations, phenomenological fits & scaling laws

Hubble rate, acceleration of expansion, satellite galaxies count...

Observables derived from first principles

GR+QED, Integration of linearised Einstein + Boltzmann

Observables derived from modelling of complex phenomena non-linear simulations, phenomenological fits & scaling laws

Supernovae, Cepheids, small-scale structures, light element abundances

Hubble rate, acceleration of expansion, satellite galaxies count...

~1500 (Planck) + ~10 *independent* data points minimal 6-parameter model: excellent fit for binned TT data, $\chi 2/dof=1.004$ for 731 d.o.f.

most recent H₀ measurement *(Riess et al.)*1 point in tension at 3.2σ
(w.r.t. Planck 2016 TT+SIMlow)

ling laws

nena

ids, es,

ances

sion,

lensing power spectrum

scale

spectrum

satellite galaxies count...

~1500 (Planck) + ~10 *independent* data points minimal 6-parameter model: excellent fit

for binned TT data, $\chi 2/dof = 1.004$ for 731 d.o.f.

most recent H₀ measurement (Riess et al.)

1 point in tension at 3.2σ

(w.r.t. Planck 2016 TT+SIMlow)

lensing power spectrum scale spectrum

~1500 (Planck) + ~10 *independent* data points minimal 6-parameter model: excellent fit for binned TT data, $\chi 2/dof = 1.004$ for 731 d.o.f.

satellite galaxies count...

most recent H₀ measurement (Riess et al.)

1 point in tension at 3.2σ
(w.r.t. Planck 2016 TT+SIMlow)

nena

ling laws

ids,

tes,

ances

sion,

Tensing power spectrum scale

spectrum

satellite galaxies count...

~1500 (Planck) + ~10 *independent* data points minimal 6-parameter model: excellent fit for binned TT data, $\chi 2/dof = 1.004$ for 731 d.o.f.

most recent H₀ measurement (Riess et al.)

1 point in tension at 3.2σ
(w.r.t. Planck 2016 TT+SIMlow)

nena

lind laws

ids,

tes,

ances

H0 tension (direct measurement versus inferred model-dependent CMB value)

Tensing power spectrum

scale

spectrum

satellite galaxies count...

~1500 (Planck) + ~10 *independent* data points minimal 6-parameter model: excellent fit for binned TT data, $\chi 2/dof=1.004$ for 731 d.o.f.

most recent H₀ measurement *(Riess et al.)*1 point in tension at 3.2σ
(w.r.t. Planck 2016 TT+SIMlow)

nena

ling laws

ids,

tes,

ances

• same with combinations of N_{eff} / neutrino masses / w_{DE} / curvature / GWs ...

lensing power spectrum scale spectrum satellite galaxies count...

~1500 (Planck) + ~10 *independent* data points minimal 6-parameter model: excellent fit for binned TT data, $\chi 2/dof=1.004$ for 731 d.o.f.

most recent H_0 measurement *(Riess et al.)*1 point in tension at 3.2σ

(w.r.t. Planck 2016 TT+SIMlow)

nena

ling laws

ids,

tes,

ances

• same with combinations of N_{eff} / neutrino masses / w_{DE} / curvature / GWs ...

... we would need to pay a higher price, e.g.:

- Sterile neutrinos + NSI (will see later in context of neutrino osc. anomalies; Archidiacono et al. 2016)
- DM-DR interactions (JL, Marques-Tavares, Schmaltz 2016)
- local H₀ versus average expansion: does not work unless we live in a local void so underdense that it would contradict ΛCDM and observations

Then following bounds could change; although bounds on active neutrino masses turn out to be rather stable ungainst these models

lensing power spectrum

scale

spectrum

satellite galaxies count...

~1500 (Planck) + ~10 *independent* data points minimal 6-parameter model: excellent fit for binned TT data, $\chi 2/dof = 1.004$ for 731 d.o.f.

most recent H₀ measurement (Riess et al.)

1 point in tension at 3.2σ
(w.r.t. Planck 2016 TT+SIMlow)

nena

lind laws

ids,

tes,

ances

from 21 cm hydroge

relativistic
neutrino contribution
to early expansion

metric fluctuations during nonrelativistic **neutrino** transition (early ISW) non-relativistic **neutrino** contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

relativistic
neutrino contribution
to early expansion

metric fluctuations during nonrelativistic **neutrino** transition (early ISW) non-relativistic **neutrino** contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

Active neutrino summed mass $M_v = \Sigma_i m_i$

Model parameters / magnitude of effects on observables:

- masses of 3 mass eigenstates: m₁, m₂, m₃
- basis { $m_1+m_2+m_3$, m_3-m_1 , m_3-m_2 } (ρ_v in recent universe). (individual free-streaming scales)

~5% (0.06eV) ~50% (0.6eV)

between deg/NH/IH

~0.1%

... actual bounds only on $M_v = m_1 + m_2 + m_3$

relativistic
neutrino contribution
to early expansion

metric fluctuations during nonrelativistic **neutrino** transition (early ISW) non-relativistic **neutrino** contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

Active neutrino summed mass $M_v = \Sigma_i m_i$

In standard picture (no NSI, no large v/anti-v asymmetry,

- ...) bounds on $M_v = m_1 + m_2 + m_3$ independent on:
- Flavour oscillations, mixing angles
 (because 3 p.s.d.'s nearly identical in mass/interaction basis)
- Dirac/Majorana
- CP violating phase

relativistic
neutrino contribution
to early expansion

metric fluctuations during nonrelativistic **neutrino** transition (early ISW) non-relativistic **neutrino** contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

Active neutrino summed mass $M_v = \Sigma_i m_i$

Light (eV-ish) sterile neutrino mass/abundance

relativistic **neutrino** contribution
to early expansion

metric fluctuations during nonrelativistic **neutrino** transition (early ISW) non-relativistic **neutrino** contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

Active neutrino summed mass $M_v = \Sigma_i m_i$

Light (eV-ish) sterile neutrino mass/abundance

Theoretical model features 4 mass eigenstates...

Model-dependent bounds, depending on phasespace distribution (psd) of sterile neutrino at T<1keV, expressed on two *additional* parameters *related* to:

- psd of v_4 —> more precisely ΔN_{eff}
- m_4 —> more precisely some m_4^{eff} derived from $\Delta \rho_{v4}$

relativistic
neutrino contribution
to early expansion

metric fluctuations during nonrelativistic **neutrino** transition (early ISW) non-relativistic **neutrino** contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

Active neutrino summed mass $M_v=\Sigma_i m_i$

Light (eV-ish) sterile neutrino mass/abundance

Heavy (keV-ish) sterile neutrino mass/abundance

relativistic
neutrino contribution
to early expansion

metric fluctuations during nonrelativistic **neutrino** transition (early ISW) non-relativistic **neutrino** contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

Active neutrino summed mass $M_v = \Sigma_i m_i$

Heavy (keV-ish) sterile neutrino mass/abundance

Active neutrino nonstandard interactions

Light (eV-ish) sterile neutrino mass/abundance

metric fluctuations during nonrelativistic **neutrino** transition (early ISW)

non-relativistic neutrino contribution to late expansion rate (acoustic angular see

v decay?

neutrino slow down early dark matter clustering

neutrino contribution

to early expansion

neutrino propagation and dispersion velocity

neutrino slow down late ordinary/dark matter clustering

v recouple like fluid? v scatter on DM

v scatter on DM

Observables derived from first principles

GR+QED, Integration of linearised Einstein + Boltzmann

Observables derived from modelling of complex phenomena non-linear simulations, phenomenological fits & scaling laws

CMB

-500 µK_{sp}

-500 qK_{sp}

Large Scale Structure

Supernovae, Cepheids, small-scale structures, light element abundances

Active neutrino summed mass $M_v = \Sigma_i m_i$

Active neutrino nonstandard interactions

Hubble rate, eleration of expansion, ellite galaxies count...

Light (eV-ish) sterile neutrino mass/abundance

Heavy (keV-ish) sterile neutrino mass/abundance

95%CL upper bounds on $\Sigma_i m_i$

95%CL upper bounds on Σ_im_i for 7 parameters

CMB only: WMAP, VSA, ACBAR, CBI...

CMB + LSS : 2dF, SDSS-BAO, SDSS-power spectrum

CMB + LSS : Lyman-alpha

Seljak et al. 2006; Viel et al. 2006

... bounds could weaken considerably for > 7 parameters

95%CL upper bounds on Σ_im_i for 7 parameters

CMB only: Planck, w/o high-l polarisation and lensing... $\Sigma_{i}m_{i} < 590$ to 140 meV (95%CL)

CMB + LSS:

- Planck 2016 {TT+SIMLow+lensing} + BAO:
 Σ_im_i < **170 meV** (95%CL)
- Planck 2016 {TTTEEE+SIMLow} + BAO:
 Σ_im_i < **120 meV** (95%CL)
- Planck 2015 + Lyman-α:
 Σ_im_i < **120 meV** (95%CL)

[Planck col.] 1605.02985; Cuesta et al. 2016; Palanque-Delabrouille et al. 1506.05976; Vagnozzy et al. 1701.08172

... harder to avoid bounds with simple cosmological model extensions

95%CL upper bounds on Σ_im_i beyond 7 parameters

Usual suspects:

- extra massless relics
- extra light relics
- spatial curvature
- simplest dynamical DE
- primordial GWs
- primordial tilt running

Even more freedom in:

- modified Einstein Gravity
- interactions in DM sector
- primordial perturbations

95%CL upper bounds on Σ_im_i beyond 7 parameters

Usual suspects:

- extra massless relics
- extra light relics
- spatial curvature
- simplest dynamical DE
- primordial GWs
- primordial tilt running

Even more freedom in:

- modified Einstein Gravity
- interactions in DM sector
- primordial perturbations

[Planck col.] 1502.01589;

95%CL upper bounds on Σ_im_i beyond 7 parameters

Usual suspects:

- extra massless relics
- extra light relics
- spatial curvature
- simplest dynamical DE
- primordial GWs
- primordial tilt running

Even more freedom in:

- modified Einstein Gravity
- interactions in DM sector
- primordial perturbations

[Planck col.] 1502.01589;

27

95%CL upper bounds on Σ_im_i beyond 7 parameters

Usual suspects:

- extra massless relics
- extra light relics
- spatial curvature
- simplest dynamical DE
- primordial GWs
- primordial tilt running

Even more freedom in:

- modified Einstein Gravity
- interactions in DM sector
- primordial perturbations

[Planck col.] 1502.01589; Di Valentino et al. 1507.06646

95%CL upper bounds on Σ_im_i beyond 7 parameters

Usual suspects:

- extra massless relics
- extra light relics
- spatial curvature
- simplest dynamical DE
- primordial GWs
- primordial tilt running

Even more freedom in:

- modified Einstein Gravity
- interactions in DM sector
- primordial perturbations

[Planck col.] 1502.01589; Di Valentino et al. 1507.06646

95%CL upper bounds on $\Sigma_i m_i$

[Planck col.] 1502.01589; Di Valentino et al. 1507.06646

No controversy on quoting on upper cosmological bounds on $\Sigma_i m_i$:

- usually derived from Bayesian analysis with flat prior on $\Sigma_i m_i > 0$
- not much difference when adopting other priors (e.g. flat > 0.06eV or 0.11eV)
- no significance difference with frequentist bounds

Recent controversy on goodness of fit of NH versus IH with joint cosmo+laboratory bounds:

- Bayesian evidence ratio: role of priors is important; depending on methodology:
 - from weak: odds of 2 to 1 (Hannestad & Schwetz 1606.04691)
 - to strong: odds of 50 to 1 (Simpson et al. 1703.03425)
- Frequentist (Δχ²): 2σ preference for NH (Capozzi et al. 1703.04471)

Premature discussion —> depends too much on underlying cosmology & datasets (e.g. <0.120meV vs. <0.170meV makes crucial difference)

FUTURE LSS: 1σ forecast errors on $\Sigma_i m_i$

DES	2013-2018	Ground
eBOSS	2014-2020	Ground
DESI	2018-2022	Ground
Euclid	2019	Space
wFIRST	2020	Space
LSST	2023	Ground
SKA	1:2018-2023 2:2023-2030	Ground

Planck + next generation LSS:
DES, DESI, Euclid, LSST, wFIRST, SKA
60 -> 14 meV (7 params)

up to 4x worse (complicated models)

e.g. Font-Ribera et al. 1308.4164

FUTURE CMB: 1σ forecast errors on $\Sigma_i m_i$

Combination of CMB and various LSS probes remove degeneracies

Full-sky CMB experiment and SKA 21cm survey crucial to avoid degeneracy with optical depth

Archidiacono, Brinckmann, JL, Poulin 2016

ve neutrinos

CMB-Stage III, IV: no better numbers but gain in robustness
(e.g. 5 15meV from S-IV+DESI only)
Need large angles (τ degeneracy)...

CORE + next generation LSS:

DES, DESI, Euclid, LSST, wFIRST, SKA

40 -> 12 meV (7 params + ...)

up to 2x worse (complicated models)

e.g. Brinckmann et al. 1612.00021

... with some uncertainty on optical depth determination by SKA

FU

- at first sight much more sensitive than many β and double- β decay (KATRIN, GERDA, ...), but indirect probe of a different parameter with several assumptions
- cannot be disappointing: given exquisite sensitivities, non-detection or discrepancy with β- decay would require major change of paradigm on the late time behaviour of the cosmological model (new physics to describe structure formation: MG, non-standard particle interactions) or on neutrino physics (decaying neutrinos, mass from coupling with varying scalar, NSI, etc.)

Extra relics (small mass case)

Current an future bounds on one early-decoupled or non-thermalized extra light species (e.g. v_4 of 3+1 scenario, abusively called "sterile neutrino")

Effective density parameters

Planck 2015 (TT+lowP+lensing) + BAO

 ΔN_{eff} (extra contribution to density before NR transition)

<0.7 (95%CL)

m_{eff} (extra contribution to density *after* NR transition)

< 400 meV (95%CL)

Ve Vu

Connection with neutrino reactor/SBL oscillation anomaly: 3+1 scenario:

before active v decoupling (T~1MeV): W, Z

 ∫ ↑ \text{weak interactions}

- weak interaction basis:
- mass basis : (V₁) (V₂) (V₃) (V₄)
- $\sin^2 2\theta \sim 0.05$ > thermalisation: ~ same p.s.d for v_1 , v_2 , v_3 , v_4 e.g. Hannestad, Tambora & Tram 2012; Bridle et al. 1607.00032

Cosmological model:

- Λ CDM with 4 light thermalised species with $\Delta N_{eff}=1$, $m_{eff}=m_4$
- Data probes [m₁+m₂+m₃+m₄], but bounds on m_{eff} can be reported:

m_{eff} (extra contribution to density *after* NR transition)

< 400 meV (95%CL)

oscillations

Extra relics (small mass case)

Current an future bounds on one early-decoupled or non-thermalized extra light species (e.g. v_4 of 3+1 scenario, abusively called "sterile neutrino")

Effective density parameters

Planck 2015 (TT+lowP+lensing) + BAO

 ΔN_{eff} (extra contribution to density before NR transition)

<0.7 (95%CL)

m_{eff} (extra contribution to density *after* NR transition)

< 400 meV (95%CL)

Extra relics (small mass case)

Can we tweak cosmological model and accommodate ΔN_{eff}~1 and m_s~1eV?

- Sounds very difficult
- not even with full freedom in primordial spectrum:

Di Valentino et al. 1601.0755

After marginalisation over 12 free parameters for binned primordial spectrum:

$$m_s = 1eV$$

excluded at >4\sigma with Planck 2015 TT+lowP + BAO

$$+ N_{eff} = 4$$
:

- compatible at 20 without Planck 2015 TTTEEE,
- excluded at >20 with Planck 2015 TTTEEE

Low-temperature reheating

Gelmini et al. 2014, de Salas et al. 2015

- Leptonic asymmetry and resonant oscillations... issues with BBN (µe)
 - Di Bari et al. 2001; ...; Hannestad, Tambora & Tram 2012; Mirizzi et al. 2012; Saviano et al. 2013
- NSI (need to pass bounds on fifth force and SN energy loss...)
 - v₄ interacts with (dark) gauge boson

Dasgupta, Kopp 2015; Saviano et al. 2014; Mirizzi et al. 2014; Chu, Dasgupta, Kopp 2015

v₄ interacts with (dark) pseudoscalar

Hannestad et al. 2013; Saviano et al. 2014; Archidiacono et al. 2016

- v_4 production is suppressed, ϕ - v_s recouple —> neutrinos as relativistic fluid (potential issue for fitting CMB data), v₄ annihilate into φ at late times...
- if N_{eff}>3 detected: possible tests, but there is a range compatible with SN and with negligible ΔN_{eff} : how can we test this model?

CORE et al. 1612.00021

Extra relics (small mass case)

Current an future bounds on one early-decoupled or non-thermalized extra light species (e.g. sterile neutrino)

CORE + DESI + Planck 2015 **Euclid Effective density** (TT+lowP+lensing) + BAO **CORE** collaboration parameters [1612.00021] ∆N_{eff} (extra contribution to **2**σ ~ **0.10** <0.7 (95%CL) density before NR transition) m_{eff} (extra contribution to < 400 meV 2σ ~ 66 meV density after NR (95%CL) transition)

O.4

(agressive)

Planck+lensing

LiteCORE-80

CORE-M5

COrE+

Meff 0.2

0.3

Meff [eV]

(forecasted errors obtained while simultaneously varying — and measuring — active neutrino mass scale)

KeV sterile neutrino

- Non-resonantly produced (leptonic asymmetry << 10⁻⁶): "pure Warm Dark Matter": EXCLUDED
- Resonantly produced (leptonic asymmetry ~ 10⁻⁶): "Cold+Warm Dark
 Matter": PROBABLY EXCLUDED (effect of T_{IGM}(z) ? Garzilli et al.2015)

 As a fraction of DM only: future improvement on both sides (X-ray despite Hitomi failure-, Lyman-alpha)

END

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

neutrino slow down late ordinary/dark matter clustering

pansior

r scale)