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Overview
• Right-handed neutrinos might play a role over a very 

wide temperature range in the early universe

• Leptogenesis can happen either through decays of 
very heavy RHNs or through oscillations (ARS...) of 
lighter ones (T>130 GeV , TEW~160 GeV)

• O(keV) RHNs may be DM. If a lepton asymmetry 
survives to T~1 GeV then resonant production 
possible Shi Fuller 

• Important to have rates (equilibration, washout, ...) 
and kinetic equations from T≫TEW  to T≲GeV



Outline
• Brief introduction

• Evolution equations to order h2

• Computing the rates entering those eqs. at LO in the 
SM

• In the symmetric phase

• In the broken phase

• Not in this talk: resonant production of keV RHNs 
Asaka Laine Shaposhnikov (2006), Laine Shaposhnikov (2008), JG 
Laine (2015), Venumadhav Cyr-Racine Abazajian Hirata (2015)



• Factor the system into “fast” and “slow” modes, and 
integrate out the former to obtain evolution eqs. for 
the latter

• For instance

•  for 130 GeV≲T≲105 GeV, all SM interactions are in 
thermal equilibrium

• O(GeV) RHNs have ~10-7 Yukawas: non-eq. 
ensemble

• Lepton (and baryon) densities also evolve slowly

General approach



General approach
• Factor the system into “fast” and “slow” modes, and 

integrate out the former to obtain evolution eqs. for 
the latter

• For instance

•  for 130 GeV≲T≲105 GeV, all SM interactions are in 
thermal equilibrium

• O(GeV) RHNs have ~10-7 Yukawas: non-eq. 
ensemble

• Lepton (and baryon) densities also evolve slowly



Constructing the equations
• From this a coupled set of evolution eqs can be obtained 

rigorously, as in JG Laine 1703.06087, following the 
evolutions of these slow variables and keeping track of 
flavour and helicity effects, as well as backreactions 

• Previous results can be obtained in the appropriate 
limits (Hernandez et al 1606.06719, Bödeker Sangel Wörmann 
1510.06742, Bödeker Laine 1403.2755)

• Similar approach at lower T (broken phase) in Eijima 
Shaposhnikov 1703.06085

• CTP-based approach (with similar equations)
Drewes Garbrecht Gueter Klaric 1606.06690



Constructing the equations
• The starting point is 

• We want to follow the evolution of na -nB/3 (because 
sphalerons) and of the sterile neutrino density matrix 
(keeping track of helicity and flavor)

• In general                                             with  
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Ȯ(t)⇢full(t)

⇤
⇢full = ⇢EQ

SM ⌦ ⇢N



• In general                                             with  

• The two sectors talk through Hint, linear in h 
(Yukawa).

Since       is linear in h and

then

hȮ(t)i = Tr
�⇥

Ȯ(t),�i

Z t

0
dt0 Hint(t

0)
⇤
⇢full(0)

 
+ O(h3)

Constructing the equations
hȮ(t)i ⌘ Tr

⇥
Ȯ(t)⇢full(t)

⇤
⇢full = ⇢EQ

SM ⌦ ⇢N

hȮ(t)i ⌘ Tr
⇥
Ȯ(t)⇢full(t)

⇤

In order to understand the dynamics induced by Hint, it is helpful to go over to the Heisen-

berg picture for a moment (cf. ref. [22] for an analogous discussion, and appendix A.1 for a

detailed step-by-step argument). Then the canonical equation of motion for the annihilation

operator, defined by expressing the field operator in the form of eq. (2.3) and accounting for

any additional time dependences through akτI and a†qσJ , becomes

iȧkτI(t) =
[

akτI ,Hint

]

=
1

√

2ωk
I

∫

x

∑

a

[

ūkτIhIa ja(X )− j̄a(X )h∗IavkτI
]

eiKI ·X . (2.6)

An analogous equation is obtained for a†qσJ . The canonical anticommutator remains time-

independent. Similarly, the lepton asymmetries evolve as [23]

iL̇a(t) =

∫

x

∑

I

[

j̄a(X )h∗IaNI(X )− N̄I(X )hIaja(X )
]

. (2.7)

For the physical observables that we are interested in, the evolution rate is of O(h2). We

extract the rate from an expectation value of an operator like in eq. (2.7). In order to evaluate

the expection value, we return to the interaction picture. Then, the time evolution of the

density matrix is determined by Hint. In particular, assuming that the full density matrix is

known at some time t = 0, its time evolution is to first order in h given by

ρfull(t) = ρfull(0)− i

∫ t

0
dt′
[

Hint(t
′), ρfull(0)

]

+O(h2) . (2.8)

The physical rate can then be defined as (cf. e.g. ref. [24], and eq. (A.6) for an explanation

of intermediate steps)

⟨Ȯ(t)⟩ ≡ Tr
[

Ȯ(t)ρfull(t)
]

= Tr
{[

Ȯ(t),−i

∫ t

0
dt′Hint(t

′)
]

ρfull(0)
}

+ O(h3) . (2.9)

The expectation value with respect to the density matrix ρfull(0) is denoted by ⟨...⟩ ≡
Tr {... ρfull(0)}. At the end of the computation, this can be re-interpreted as having been

evaluated with the density matrix at time t, since the difference between ρfull(t) and ρfull(0)

is of O(h). This way, so-called secular terms can be avoided.

Because of the different times scales related to the “slow” and “fast” variables, we can

assume the full density matrix to have a block-diagonal form, ρfull = ρN ⊗ ρSM, where ρN is

the density matrix associated with the sterile neutrinos. The density matrix associated with

the Standard Model degrees of freedom, ρSM, is in equilibrium at a temperature T and is

parametrized by (slowly evolving) chemical potentials µa and µB:

ρSM =
1

ZSM

exp

(

−
HSM −

∑

a µaLa − µBB

T

)

. (2.10)

4

dynamics of the “slow” oscillations, and will be addressed in a separate study.

2.2. Basic variables and equations of motion

In the temperature range considered (T >∼ 130 GeV) the Higgs mechanism gives a contribution

small compared with thermal masses, i.e. mW ∼ gv/2 ≪ gT , where g denotes the SU(2) gauge

coupling. Then the masses of sterile neutrinos are directly given by the Majorana masses,

assumed real and positive and denoted by MI , I ∈ {1, 2, 3}. The Lagrangian reads

L = LSM +
1

2

∑

I

N̄I

(

iγµ∂µ −MI

)

NI −
∑

I,a

(

ℓ̄aaRφ̃ h∗IaNI + N̄I hIa φ̃
†aLℓa

)

, (2.1)

where φ̃ = iσ2φ∗ is a Higgs doublet; aL, aR are chiral projectors; ℓa = (ν e)Ta is a left-handed

lepton doublet of generation a; and hIa are the components of the neutrino Yukawa matrix.

We consider the so-called ultrarelativistic regime, k ∼ πT ≫ MI , so that a free dispersion

relation reads

ωk
I ≡

√

k2 +M2
I ≈ k +

M2
I

2k
. (2.2)

In this regime the vacuum mass is corrected by a thermal effect of O(h2T 2) [21]. Even though

h is small, the thermal correction is relevant because it should be compared with the mass

differences M2
I −M2

J and because the initial temperature may be high, T ∼ 105 GeV. In our

formalism, thermal masses originate as a part of the O(h2) corrections, cf. appendix A. There-

fore, we treat the kinematics as in vacuum for the moment. The kinematic approximation of

eq. (2.2) is frequently invoked in order to simplify the discussion.

The sterile neutrino field operator in the interaction picture can be written as

NI(X ) =

∫

k

1
√

2ωk
I

∑

τ

(

ukτI akτI e
−iKI ·X + vkτI a

†
kτI e

iKI ·X
)

, (2.3)

where
∫

k
≡
∫

d3k
(2π)3 and KI · X ≡ ωk

I t − k · x. In accordance with the Majorana nature of

NI , the on-shell spinors are related by v = CūT , where C is the charge conjugation matrix.

The creation and annihilation operators, which are time-independent in eq. (2.3), satisfy the

commutation relations {akτI , a
†
qσJ} = (2π)3δ(3)(k− q)δτσδIJ .

Sterile neutrinos interact through the Yukawa terms in eq. (2.1). We rephrase the interac-

tions through an interaction Hamiltonian,

Hint(t) =

∫

x

∑

I,a

[

j̄a(X )h∗IaNI(X ) + N̄I(X )hIa ja(X )
]

, X = (t,x) . (2.4)

By ja and j̄a we denote Standard Model currents from eq. (2.1),

ja ≡ aLja ≡ φ̃†aLℓa , j̄a ≡ ℓ̄aaRφ̃ . (2.5)

3



• Thanks to the factorization between slow and hard 
modes, the latter only enter in the spectral function of 
the SM current

Constructing the equations
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• RHN density matrix (in helicity and flavor) evolves as

where

                                   scattering off (anti)leptons

Constructing the equationsL = LSM +
1
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The large-t value of I1 can be defined as a limit:

lim
t→∞

∫ t

0
dt′ ei(ω−ωk

J )(t−t′) ≡ lim
ϵ→0+

∫ ∞

0
dt′ ei(ω−ωk

J+iϵ)t′ =
i

ω − ωk
J + iϵ

= P
( i

ω − ωk
J

)

+ πδ(ω − ωk
J ) . (2.26)

Assuming that φ1 is slowly varying around ω ≈ ωk
J , the principal value part is antisymmetric

around this point and corresponds to a higher time derivative correction; it amounts to

a correction of ωk
J through a thermal mass (this is shown in appendix A). We postpone

the inclusion of this “dispersive” or “virtual” correction for the moment, focussing first on

“absorptive” or “real” effects. For those, we need Re I1 ≈ 1
2e

i(ωk
J−ωk

I )t φ1(ω
k
J ).

Inserting the time integral as well as eqs. (2.17)–(2.20) into eq. (2.9), we find that absorptive

time evolution is parametrized by the slowly evolving coefficients

Γ̂+
(aτ)IJ(t) ≡

h∗IahJa
√

ωk
I ωk

J

ūkτJ aL ρa(KJ) aR ukτI e
i(ωk

J−ωk
I )t , (2.27)

Γ̂−
(aτ)IJ(t) ≡

hIah
∗
Ja

√

ωk
I ω

k
J

ūkτJ aR ρa(−KJ) aL ukτI e
i(ωk

J−ωk
I )t , (2.28)

where KJ ≡ (ωk
J ,k). Noting that ρa is real (cf. appendix B of ref. [25] for a general discussion),

the evolution equation reads

⟨ ˙̂ρτI;σJ⟩ =
1

2

∑

L,a

{

Γ̂+
(aτ)IL(t)

[

δτσδLJ nF(ω
k
J − µa) − ⟨ρ̂τL;σJ⟩

]

+
[

δτσδIL nF(ω
k
I − µa) − ⟨ρ̂τI;σL⟩

]

Γ̂+∗
(aσ)JL

(t)

+ Γ̂−
(aτ)IL(t)

[

δτσδLJ nF(ω
k
J + µa) − ⟨ρ̂τL;σJ⟩

]

+
[

δτσδIL nF(ω
k
I + µa) − ⟨ρ̂τI;σL⟩

]

Γ̂−∗
(aσ)JL

(t)

}

+O(h3) , (2.29)

where the “equilibrium” terms containing nF originate from {akσJ
, a†kτL}/V = δτσδLJ . The

terms containing Γ̂+ and nF(ω − µa) represent scatterings involving leptons, whereas those

with Γ̂− and nF(ω + µa) represent the contributions of antileptons. Physically, Γ̂+
(aτ)IJ de-

scribes the rate at which the in-medium wave function of state (kτJ) gets projected in the

direction of (kτI), and Γ̂−
(aτ)IJ does the same for the charge-conjugated process.

It may be noted that the right-hand side of eq. (2.29) vanishes in equilibrium, i.e. if the

density matrix is diagonal and all lepton chemical potentials vanish. Its general form is,

however, valid both near and far from equilibrium.

It can also be observed that there is no equilibrium term with τ ̸= σ: helicity non-diagonal

correlations decrease to zero with time. In particular, if we start from an initial density
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i
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= P
( i

ω − ωk
J

)

+ πδ(ω − ωk
J ) . (2.26)

Assuming that φ1 is slowly varying around ω ≈ ωk
J , the principal value part is antisymmetric

around this point and corresponds to a higher time derivative correction; it amounts to

a correction of ωk
J through a thermal mass (this is shown in appendix A). We postpone

the inclusion of this “dispersive” or “virtual” correction for the moment, focussing first on

“absorptive” or “real” effects. For those, we need Re I1 ≈ 1
2e

i(ωk
J−ωk

I )t φ1(ω
k
J ).

Inserting the time integral as well as eqs. (2.17)–(2.20) into eq. (2.9), we find that absorptive

time evolution is parametrized by the slowly evolving coefficients

Γ̂+
(aτ)IJ(t) ≡

h∗IahJa
√

ωk
I ωk

J

ūkτJ aL ρa(KJ) aR ukτI e
i(ωk

J−ωk
I )t , (2.27)

Γ̂−
(aτ)IJ(t) ≡

hIah
∗
Ja

√

ωk
I ω

k
J

ūkτJ aR ρa(−KJ) aL ukτI e
i(ωk

J−ωk
I )t , (2.28)

where KJ ≡ (ωk
J ,k). Noting that ρa is real (cf. appendix B of ref. [25] for a general discussion),

the evolution equation reads

⟨ ˙̂ρτI;σJ⟩ =
1

2

∑

L,a

{

Γ̂+
(aτ)IL(t)

[

δτσδLJ nF(ω
k
J − µa) − ⟨ρ̂τL;σJ⟩

]

+
[

δτσδIL nF(ω
k
I − µa) − ⟨ρ̂τI;σL⟩

]

Γ̂+∗
(aσ)JL

(t)
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δτσδLJ nF(ω
k
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[
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k
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]
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(aσ)JL

(t)

}

+O(h3) , (2.29)

where the “equilibrium” terms containing nF originate from {akσJ
, a†kτL}/V = δτσδLJ . The

terms containing Γ̂+ and nF(ω − µa) represent scatterings involving leptons, whereas those

with Γ̂− and nF(ω + µa) represent the contributions of antileptons. Physically, Γ̂+
(aτ)IJ de-

scribes the rate at which the in-medium wave function of state (kτJ) gets projected in the

direction of (kτI), and Γ̂−
(aτ)IJ does the same for the charge-conjugated process.

It may be noted that the right-hand side of eq. (2.29) vanishes in equilibrium, i.e. if the

density matrix is diagonal and all lepton chemical potentials vanish. Its general form is,

however, valid both near and far from equilibrium.

It can also be observed that there is no equilibrium term with τ ̸= σ: helicity non-diagonal

correlations decrease to zero with time. In particular, if we start from an initial density
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around this point and corresponds to a higher time derivative correction; it amounts to

a correction of ωk
J through a thermal mass (this is shown in appendix A). We postpone

the inclusion of this “dispersive” or “virtual” correction for the moment, focussing first on
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I )t φ1(ω
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J ).

Inserting the time integral as well as eqs. (2.17)–(2.20) into eq. (2.9), we find that absorptive

time evolution is parametrized by the slowly evolving coefficients
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where the “equilibrium” terms containing nF originate from {akσJ
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terms containing Γ̂+ and nF(ω − µa) represent scatterings involving leptons, whereas those

with Γ̂− and nF(ω + µa) represent the contributions of antileptons. Physically, Γ̂+
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scribes the rate at which the in-medium wave function of state (kτJ) gets projected in the

direction of (kτI), and Γ̂−
(aτ)IJ does the same for the charge-conjugated process.

It may be noted that the right-hand side of eq. (2.29) vanishes in equilibrium, i.e. if the

density matrix is diagonal and all lepton chemical potentials vanish. Its general form is,

however, valid both near and far from equilibrium.

It can also be observed that there is no equilibrium term with τ ̸= σ: helicity non-diagonal

correlations decrease to zero with time. In particular, if we start from an initial density
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ṅa �

ṅB
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• Similarly

where

                                   scattering off (anti)leptons

Constructing the equationsL = LSM +
1

2

X

I

N̄I

�
i�µ@µ �MI

�
NI �

X

I,a

�
N̄I hIaja + j̄a h

⇤
IaNI

�

ja = �̃†aL la

⌦
ja(X ) j̄b(Y)

↵
= �ab

Z

P
e�iP·(X�Y) ⇧>

a (P) ,

⌦
j̄b(Y) ja(X )

↵
= ��ab

Z

P
e�iP·(X�Y) ⇧<

a (P)

⇢a(P ) =
1

2

�
⇧>

a (P)�⇧<
a (P)

�

The large-t value of I1 can be defined as a limit:

lim
t→∞

∫ t

0
dt′ ei(ω−ωk

J )(t−t′) ≡ lim
ϵ→0+

∫ ∞

0
dt′ ei(ω−ωk

J+iϵ)t′ =
i

ω − ωk
J + iϵ

= P
( i

ω − ωk
J

)

+ πδ(ω − ωk
J ) . (2.26)

Assuming that φ1 is slowly varying around ω ≈ ωk
J , the principal value part is antisymmetric

around this point and corresponds to a higher time derivative correction; it amounts to

a correction of ωk
J through a thermal mass (this is shown in appendix A). We postpone

the inclusion of this “dispersive” or “virtual” correction for the moment, focussing first on

“absorptive” or “real” effects. For those, we need Re I1 ≈ 1
2e

i(ωk
J−ωk

I )t φ1(ω
k
J ).

Inserting the time integral as well as eqs. (2.17)–(2.20) into eq. (2.9), we find that absorptive

time evolution is parametrized by the slowly evolving coefficients

Γ̂+
(aτ)IJ(t) ≡

h∗IahJa
√

ωk
I ωk

J

ūkτJ aL ρa(KJ) aR ukτI e
i(ωk

J−ωk
I )t , (2.27)

Γ̂−
(aτ)IJ(t) ≡

hIah
∗
Ja

√

ωk
I ω

k
J

ūkτJ aR ρa(−KJ) aL ukτI e
i(ωk

J−ωk
I )t , (2.28)

where KJ ≡ (ωk
J ,k). Noting that ρa is real (cf. appendix B of ref. [25] for a general discussion),

the evolution equation reads

⟨ ˙̂ρτI;σJ⟩ =
1

2

∑

L,a

{

Γ̂+
(aτ)IL(t)

[

δτσδLJ nF(ω
k
J − µa) − ⟨ρ̂τL;σJ⟩

]

+
[

δτσδIL nF(ω
k
I − µa) − ⟨ρ̂τI;σL⟩

]

Γ̂+∗
(aσ)JL

(t)

+ Γ̂−
(aτ)IL(t)

[

δτσδLJ nF(ω
k
J + µa) − ⟨ρ̂τL;σJ⟩

]

+
[

δτσδIL nF(ω
k
I + µa) − ⟨ρ̂τI;σL⟩

]

Γ̂−∗
(aσ)JL

(t)

}

+O(h3) , (2.29)

where the “equilibrium” terms containing nF originate from {akσJ
, a†kτL}/V = δτσδLJ . The

terms containing Γ̂+ and nF(ω − µa) represent scatterings involving leptons, whereas those

with Γ̂− and nF(ω + µa) represent the contributions of antileptons. Physically, Γ̂+
(aτ)IJ de-

scribes the rate at which the in-medium wave function of state (kτJ) gets projected in the

direction of (kτI), and Γ̂−
(aτ)IJ does the same for the charge-conjugated process.

It may be noted that the right-hand side of eq. (2.29) vanishes in equilibrium, i.e. if the

density matrix is diagonal and all lepton chemical potentials vanish. Its general form is,

however, valid both near and far from equilibrium.

It can also be observed that there is no equilibrium term with τ ̸= σ: helicity non-diagonal

correlations decrease to zero with time. In particular, if we start from an initial density
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Intermediate summary
• These equations are valid to order h2 in the 

Yukawas and in principle to all orders in the SM 
couplings. In practice ρa  known to leading order 
in the SM



Intermediate summary
• It is sensible to expand to first order in the 

chemical potentials. ρa is also a function of the 
chemical potentials μa and μY

• Q(+), R(+), S(+) are helicity-flipping (for instance 
νL→φN+) and thus they survive for vanishing 
Majorana masses, whereas Q(-), R(-), S(-) are 
helicity conserving (fermion number violating) 
and thus require M insertion

2.5. Simplified form of evolution equations

We noted in the context of eq. (2.29) that non-diagonal helicity components of the density ma-

trix decouple from the diagonal ones, and in eq. (2.32) that only the diagonal ones contribute

to lepton asymmetries. Therefore, we omit the non-diagonal components in the following.

Moreover, for easier inclusion of thermal mass corrections, we implement the redefinition in

eq. (2.30), and denote

ρ(τ)IJ ≡ ⟨ρτI;τJ⟩ . (2.33)

The evolution equations in eqs. (2.29) and (2.32) can be simplified if we expand the right-

hand sides to first order in the lepton chemical potentials, assuming µa, µB ≪ πT . Within

perturbation theory the presence of µa, µB ̸= 0 implies that the temporal component of the

hypercharge gauge potential develops an expectation value, guaranteeing the hypercharge

neutrality of the plasma; this expectation value is conventionally referred to as the hyper-

charge chemical potential, denoted by µY (cf. sec. 4.1). In this limit the coefficients in

eqs. (2.27) and (2.28), redefined through eq. (2.30), have the forms (cf. sec. 3; µ̄ ≡ µ/T )

Γ+
(aτ)IJ = h∗IahJa

[

Q(τ)IJ + µ̄aR(τ)IJ + µ̄Y S(τ)IJ

]

+O(µ̄2) , (2.34)

Γ−
(aτ)IJ = hIah

∗
Ja

[

Q(−τ)IJ − µ̄aR(−τ)IJ − µ̄Y S(−τ)IJ

]

+O(µ̄2) . (2.35)

In principle there are also coefficients proportional to µ̄B, appearing like those proportional

to µ̄Y , however these vanish at leading order (cf. sec. 3) and are omitted here already.

The functions Q,R and S, estimated in sec. 3, are found to be real. To a reasonable

approximation they are also symmetric in I ↔ J , however this symmetry is broken by the

“soft” 1 + n ↔ 2 + n scatterings evaluated in sec. 3.2. Roughly speaking, the coefficient

Γ+
(aτ)IJ describes the amplitude T ⟨J |I⟩0, where |...⟩T implies that the state evolves within a

medium. Even though 0⟨J |I⟩0 = 0⟨I|J⟩∗0, it is possible that T ⟨J |I⟩0 ̸= T ⟨I|J⟩∗0.
The physical meaning of the equations can be made more transparent by taking the helicity-

symmetric and antisymmetric parts of ρ(τ) as the basic variables. Correspondingly we define

ρ±IJ ≡
ρ(+)IJ ± ρ(−)IJ

2
. (2.36)

Furthermore, in order to streamline the equations, we make use of the kinematic simplification

in eq. (2.2). This implies that momenta k <∼MI ≪ πT are not treated properly, however their

contribution to lepton asymmetries is strongly phase-space suppressed (MI ∼ 10−2πT ).

Let us first inspect the equation for lepton asymmetries, eq. (2.32). Inserting eqs. (2.2),

(2.34) and (2.35) into eq. (2.32) we obtain

〈

ṅa −
ṅB

3

〉

= 4

∫

k

Tr
{

−nF(k)[1 − nF(k)]A
+
(a) +

[

ρ+ − nF(k)
]

B+
(a) + ρ−B−

(a)

}

+ O(µ2
a) ,

(2.37)
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Computing ρa
• In the symmetric phase T>160 GeV, with g=(g1,g2,ht,λ1/2) 

parametrically equivalent and for M~gT≪T, there exist 
two kinds of processes at leading order

Besak Bödeker 1202.1288, Ghisoiu Laine 1411.1765, Garbrecht 
Glowna Schwaller 1303.5498, Hernandez et al 1606.06719, JG 
Laine 1703.06087

1↔︎2

2↔︎2

(a) (b)

Figure 1: (a) Examples of 1+n ↔ 2+n processes for the direct generation of right-handed neutrinos

from a Yukawa interaction. (b) Examples of 1 + n ↔ 2 + n processes for the generation of left-

handed neutrinos which subsequently oscillate into right-handed ones. Arrowed, dashed, and wiggly

lines correspond to Standard Model fermions, scalars, and gauge bosons, respectively, whereas right-

handed neutrinos are denoted by a double line. The closed blob denotes a Higgs expectation value.

(a) (b)

Figure 2: (a) Examples of 2 → 2 processes for the direct generation of right-handed neutrinos from

a Yukawa interaction. (b) Examples of 2 → 2 processes for the generation of left-handed neutrinos

which subsequently oscillate into right-handed ones. The notation is as in fig. 1. The complete set for

case (a) is shown in fig. 1 of ref. [29] and for case (b) in fig. 7 below.

At lower temperatures, Higgs and gauge bosons become non-relativistic and need to be de-

coupled from the computation (the top quark becomes non-relativistic already at a somewhat

higher temperature).

In the regime of eq. (2.10), there are two types of contributions to ImΠR. First, the Higgs

field φ̃ in eq. (2.2) can represent a propagating mode (Goldstone or Higgs). This leads to the

same processes as have previously been considered in the symmetric phase [27,28]; examples

of 1 + n ↔ 2 + n processes are shown in fig. 1(a) and of 2 ↔ 2 processes in fig. 2(a). Second,

the Higgs field could be replaced by its expectation value, φ̃ ≃ (v 0)T /
√
2. Then we are left to

consider processes experienced by an active (left-handed) neutrino. Examples of amplitudes

are illustrated in figs. 1(b) and 2(b). We refer to first type as a “direct” contribution and to

the second as an “indirect” one.

When amplitudes such as those in figs. 1 and 2 are squared, there are no interference terms

between the direct and indirect sets, provided that we adopt a class of gauges (such as the

Rξ gauge) in which scalar and gauge fields do not transform to each other. Then the rate

can be written as

ImΠR = ImΠR|direct + ImΠR|indirect , (2.11)

where the “direct” processes are like in sets (a) of figs. 1 and 2. Like in the symmetric

phase [27, 28], the direct term has the parametric magnitude ImΠR|direct ∼ g2T 2 (recalling
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1↔︎2 processes

• Since all masses are O(gT), tree level processes (if 
possible) are ~M2~g2T2 and collinear

• Long formation times O(1/g2T)) imply that soft 
scatterings, at rate g2T, need to be resummed to all 
orders ⇒ Landau-Pomeranchuk-Migdal (LPM) effect
Long QCD history (BDMPS, AMY). Introduced for RHNs in 
the symmetric phase in Anisimov Besak Bödeker JCAP03 (2011), 

• Helicity-conserving contributions are suppressed for 
M~GeV
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2↔︎2 processes

• As long as all external state masses are O(gT) they can be 
neglected at leading order (O(g2T2)). Helicity-conserving 
amplitudes absent at this order
Besak Bödeker JCAP03 (2012)

• At low T<mW initial state bosons (scalar or gauge) are very 
massive. We switch off the rate at low T by multiplying it for 
the W boson susceptibility

• The formally leading-order contribution at low T is scalar-
mediated scatterings off b quarks. We find it is however 
negligible
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• Phase space convolution of statistical functions (with 
chemical potentials) and matrix elements. HTL resummation 
needed for soft fermion exchange. 



Symmetric phase results
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Figure 4: Left: The coefficient Q(τ)IJ from eq. (2.34), for fixed k = 3T and MJ/GeV ∈ {0.5, 1, 2, 3, 4};
the dependence on MJ is moderate, and the dependence on MI is exactly cancelled by the normaliza-

tion chosen. There is a mild divergence at the location of the electroweak crossover, indicating that

the perturbative computation becomes unreliable there. Right: The same for fixed MJ = 2 GeV and

k/T ∈ {1, 2, 3, 6, 9}. One curve has been labelled, with the dependence on k/T being monotonic.

the 2 ↔ 2 contributions from secs. 3.3–3.5. Results for Q(τ) are shown in fig. 4, those for

R(τ) in fig. 5, and those for S(τ) in fig. 6.

We find that the helicity-flipping coefficients Q(+) = QLPM
(+) + Q2↔2

(+) , |R(+)|, and S(+) are

of order ∼ (10−3...10−2)T , with in general negative values for R(+). The helicity-conserving

coefficients Q(−), R(−), and S(−) are suppressed by sterile neutrino masses, because in the

massless limit right-handed neutrinos carry opposite helicity to left-handed Standard Model

leptons. In the figures these coefficients were normalized to MI ; when normalized to T ,

their contribution is suppressed by MI/T ∼ 10−2. Therefore the coefficients appearing in

eqs. (2.38)–(2.40), (2.44)–(2.47) are dominated by the helicity-flipping contributions. However

the helicity-conserving coefficients are more IR sensitive than the helicity-flipping coefficients,

showing a mild divergence around the crossover at which their perturbative determination

becomes unreliable, and they also dictate the fermion number violation rate in accordance

with sec. 2.6, cf. eqs. (2.51)–(2.53).

20

200 400 600 800 1000
T / GeV

0.00

0.01

0.02
10 ∗ Q(-)IJ  / MI

LPM

Q(+)IJ  / T
LPM

Q(+)IJ  / T
2-2

k = 3 T

200 400 600 800 1000
T / GeV

0.00

0.01

0.02
10 ∗ Q(-)IJ  / MI

LPM

Q(+)IJ  / T
LPM

Q(+)IJ  / T
2-2

M J = 2 GeV

k = 1 T

k = 1 T

k = 1 T

Figure 4: Left: The coefficient Q(τ)IJ from eq. (2.34), for fixed k = 3T and MJ/GeV ∈ {0.5, 1, 2, 3, 4};
the dependence on MJ is moderate, and the dependence on MI is exactly cancelled by the normaliza-

tion chosen. There is a mild divergence at the location of the electroweak crossover, indicating that

the perturbative computation becomes unreliable there. Right: The same for fixed MJ = 2 GeV and

k/T ∈ {1, 2, 3, 6, 9}. One curve has been labelled, with the dependence on k/T being monotonic.

the 2 ↔ 2 contributions from secs. 3.3–3.5. Results for Q(τ) are shown in fig. 4, those for

R(τ) in fig. 5, and those for S(τ) in fig. 6.

We find that the helicity-flipping coefficients Q(+) = QLPM
(+) + Q2↔2

(+) , |R(+)|, and S(+) are

of order ∼ (10−3...10−2)T , with in general negative values for R(+). The helicity-conserving

coefficients Q(−), R(−), and S(−) are suppressed by sterile neutrino masses, because in the

massless limit right-handed neutrinos carry opposite helicity to left-handed Standard Model

leptons. In the figures these coefficients were normalized to MI ; when normalized to T ,

their contribution is suppressed by MI/T ∼ 10−2. Therefore the coefficients appearing in

eqs. (2.38)–(2.40), (2.44)–(2.47) are dominated by the helicity-flipping contributions. However

the helicity-conserving coefficients are more IR sensitive than the helicity-flipping coefficients,

showing a mild divergence around the crossover at which their perturbative determination

becomes unreliable, and they also dictate the fermion number violation rate in accordance

with sec. 2.6, cf. eqs. (2.51)–(2.53).

20

200 400 600 800 1000
T / GeV

0.00

0.01

0.02
10 ∗ Q(-)IJ  / MI

LPM

Q(+)IJ  / T
LPM

Q(+)IJ  / T
2-2

k = 3 T

200 400 600 800 1000
T / GeV

0.00

0.01

0.02
10 ∗ Q(-)IJ  / MI

LPM

Q(+)IJ  / T
LPM

Q(+)IJ  / T
2-2

M J = 2 GeV

k = 1 T

k = 1 T

k = 1 T

Figure 4: Left: The coefficient Q(τ)IJ from eq. (2.34), for fixed k = 3T and MJ/GeV ∈ {0.5, 1, 2, 3, 4};
the dependence on MJ is moderate, and the dependence on MI is exactly cancelled by the normaliza-

tion chosen. There is a mild divergence at the location of the electroweak crossover, indicating that

the perturbative computation becomes unreliable there. Right: The same for fixed MJ = 2 GeV and

k/T ∈ {1, 2, 3, 6, 9}. One curve has been labelled, with the dependence on k/T being monotonic.

the 2 ↔ 2 contributions from secs. 3.3–3.5. Results for Q(τ) are shown in fig. 4, those for

R(τ) in fig. 5, and those for S(τ) in fig. 6.

We find that the helicity-flipping coefficients Q(+) = QLPM
(+) + Q2↔2

(+) , |R(+)|, and S(+) are

of order ∼ (10−3...10−2)T , with in general negative values for R(+). The helicity-conserving

coefficients Q(−), R(−), and S(−) are suppressed by sterile neutrino masses, because in the

massless limit right-handed neutrinos carry opposite helicity to left-handed Standard Model

leptons. In the figures these coefficients were normalized to MI ; when normalized to T ,

their contribution is suppressed by MI/T ∼ 10−2. Therefore the coefficients appearing in

eqs. (2.38)–(2.40), (2.44)–(2.47) are dominated by the helicity-flipping contributions. However

the helicity-conserving coefficients are more IR sensitive than the helicity-flipping coefficients,

showing a mild divergence around the crossover at which their perturbative determination

becomes unreliable, and they also dictate the fermion number violation rate in accordance

with sec. 2.6, cf. eqs. (2.51)–(2.53).
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Symmetric phase results

• Outlook:

• solve the evolution equations with these rates and 
the full effects of  helicity and chemical potentials, 
in the cosmological background, as in Hernandez et 
al 1606.06719

• Get to the physically interesting O(h4) (and higher) 
effects from the coupled dynamics of slow modes 
Shuve Yavin 1401.2459



• In the broken phase the Higgs e.v. v>0. We consider 
the parametric range T≳v, so that thermal masses 
(O(gT)) and Higgs mechanism masses (O(gv)) are of 
the same order. In practice

where g=(g1,g2,ht,λ1/2) (parametrically equivalent)

• In this region MI≲gT

• We also consider mW≳πT to cover the low-temperature 
region down to 5 GeV

• Chemical potentials and helicity effects not included 
JG Laine 1605.07720

This relation applies to all orders in Standard Model couplings.

Normally, when referring to the right-handed neutrino “production rate”, it is assumed

that their number density is small, fIk ≪ nF. For this case eqs. (2.4) and (2.5) imply that

ṅI =
∑

a

∫

k

2nF(EI)|hIa|2 ImΠR(K)

EI

+O(h4, nI) . (2.7)

The same processes by which right-handed neutrinos equilibrate or are produced also violate

lepton densities carried by Standard Model particles. Because lepton numbers are violated,

their equilibrium values vanish. Close to equilibrium, the lepton densities evolve as

ṅa = −γab nb +O
[

na(nF − fIk), n
3
a

]

, (2.8)

where the matrix of decay coefficients, or “washout rates”, can be written as [18]

γab = −
∑

I

∫

k

2n′
F(EI)|hIa|2 ImΠR(K)

EI

Ξ−1
ab +O(h4) . (2.9)

Here Ξab = ∂na/∂µb|µb=0 ∼ T 2 is a susceptibility matrix related to lepton densities. It

was determined up to next-to-next-to-leading order (NNLO) in Standard Model couplings

at T >∼ 160 GeV in ref. [30], and leading-order results valid for T <∼ 160 GeV are given in

appendix A. We note that Ξ is non-diagonal, because the plasma as a whole is charge neutral,

so that changes in the number densities of different lepton flavours are correlated.

As is clear from eqs. (2.6), (2.7) and (2.9), the dynamical information that we need is

contained in the function ImΠR, obtained from eq. (2.3). We now turn to its determination.

In order to carry out a theoretically consistent computation, power-counting rules need to

be established for the various scales appearing in the problem. We denote by ht the renor-

malized top Yukawa coupling; by Nc ≡ 3 the number of colours; by g1, g2 the hypercharge

and weak gauge couplings; and by λ the Higgs self-coupling. The notation g2 refers generi-

cally to the couplings g21, g
2
2, h

2
t ,λ which are taken to be parametrically of the same order of

magnitude, and “small” in the sense that g2 ≪ π2.

Suppose that we are at a temperature T < 160 GeV so that, in gauge-fixed perturbation

theory, the neutral component of the Higgs field has an expectation value. The expectation

value is denoted by v; at T = 0, v ≃ 246 GeV. We mainly consider a regime in which v <∼T ,

even though the case mW
>∼πT , i.e. v >∼πT/g, is considered as well. For v <∼T vacuum masses

∼ gv are of the same order as thermal masses ∼ gT but much smaller than typical momenta

k ∼ πT . In other words, all particles can be considered to be ultrarelativistic. Based on

various numerical tests, this regime is numerically applicable in a rather broad temperature

range,

30GeV <∼ T <∼ 160GeV . (2.10)
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Computing ρa
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Figure 1: (a) Examples of 1+n ↔ 2+n processes for the direct generation of right-handed neutrinos

from a Yukawa interaction. (b) Examples of 1 + n ↔ 2 + n processes for the generation of left-

handed neutrinos which subsequently oscillate into right-handed ones. Arrowed, dashed, and wiggly

lines correspond to Standard Model fermions, scalars, and gauge bosons, respectively, whereas right-

handed neutrinos are denoted by a double line. The closed blob denotes a Higgs expectation value.
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Figure 2: (a) Examples of 2 → 2 processes for the direct generation of right-handed neutrinos from

a Yukawa interaction. (b) Examples of 2 → 2 processes for the generation of left-handed neutrinos

which subsequently oscillate into right-handed ones. The notation is as in fig. 1. The complete set for

case (a) is shown in fig. 1 of ref. [29] and for case (b) in fig. 7 below.

At lower temperatures, Higgs and gauge bosons become non-relativistic and need to be de-

coupled from the computation (the top quark becomes non-relativistic already at a somewhat

higher temperature).

In the regime of eq. (2.10), there are two types of contributions to ImΠR. First, the Higgs

field φ̃ in eq. (2.2) can represent a propagating mode (Goldstone or Higgs). This leads to the

same processes as have previously been considered in the symmetric phase [27,28]; examples

of 1 + n ↔ 2 + n processes are shown in fig. 1(a) and of 2 ↔ 2 processes in fig. 2(a). Second,

the Higgs field could be replaced by its expectation value, φ̃ ≃ (v 0)T /
√
2. Then we are left to

consider processes experienced by an active (left-handed) neutrino. Examples of amplitudes

are illustrated in figs. 1(b) and 2(b). We refer to first type as a “direct” contribution and to

the second as an “indirect” one.

When amplitudes such as those in figs. 1 and 2 are squared, there are no interference terms

between the direct and indirect sets, provided that we adopt a class of gauges (such as the

Rξ gauge) in which scalar and gauge fields do not transform to each other. Then the rate

can be written as

ImΠR = ImΠR|direct + ImΠR|indirect , (2.11)

where the “direct” processes are like in sets (a) of figs. 1 and 2. Like in the symmetric

phase [27, 28], the direct term has the parametric magnitude ImΠR|direct ∼ g2T 2 (recalling
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Indirect processes

• In the indirect case ρ is directly proportional to the spf of 
active neutrinos, i.e.

• M2 dependence: this is an helicity conserving 
contribution. As temperature drops, this becomes very 
relevant, also because of resonant-like behavior
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Indirect processes

• In the indirect case ρ is directly proportional to the spf of 
active neutrinos, i.e.

• Real part of the active neutrino self- energy 

• At high T 

• At low T  (positive) matter potential

• (Broad) resonance 
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At low temperatures, when mW
>∼ k0 ∼ πT , there is no need for resummation, cf. sec-

tion 3.3.9 Then the relevant 1 ↔ 2 processes are the decays of the W± and Z0 gauge bosons.
We can write a Born rate like in eq. (3.31),

k0 Γ
Born = (g21 + g22)F(mZ) + 2g22 F(mW ) , (5.14)

where F is from eq. (3.32). It is appropriate to remark that Γ is gauge independent only
on the mass-shell of active neutrinos, i.e. M → 0, in accordance with eq. (5.8). Thereby
we obtain

F(m)
M→0−→

m2T

32πk
ln

{

1 + e−
m2

4kT

1− e−
1
T
(k+m2

4k )

}

. (5.15)

The contribution of eq. (5.14) in this limit is illustrated in figure 6 (“Born 1 ↔ 2”), and it
represents the dominant process for T <∼ 30GeV.

5.4 Interaction rate from 2 ↔ 2 scatterings with hard momentum transfer

We now turn to the 2 → 2 contribution to Γ. Proceeding first with Feynman diagrams, the
result can be written in a form analogous to the direct contribution in eq. (4.1):

2nF(k0) k0Γ|hard2 → 2 =

∫

dΩ2→2

{

nB(p1)nB(p2)
[

1− nF(k1)
] 1

2

∑

|Md|
2

+nB(p1)nF(p2)
[

1 + nB(k1)
] ∑

|Me|2

+nF(p1)nF(p2)
[

1− nF(k1)
] ∑

|Mf|
2

}

. (5.16)

9Resummation becomes important when the ultrarelativistic 1 ↔ 2 and the full 1 + n ↔ 2 + n LPM lines
depart from each other in figure 3, i.e. T >

∼ 60GeV.
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• At low T dominated by 1↔︎2 decays of gauge bosons
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Indirect processes
• Soft 2↔︎2 scatterings, 

leading at high T

• 2↔︎2 scatterings in the 
Fermi limit, accurate but 
subleading at low T

• 1↔︎2 decay of gauge 
bosons, leading at low T, 
inaccurate but negligible at 
high T

• Total: 1↔︎2 + the 
appropriate (smallest) 2↔︎2
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Figure 6. The active neutrino interaction rate, defined in eq. (5.8). Shown are the Born rate from
eq. (5.14) (“Born 1 ↔ 2”), the Fermi model result for 2 ↔ 2 scatterings from eq. (5.34) (“Fermi
2 ↔ 2”), and the soft 2 ↔ 2 scattering contribution from eq. (5.33) (“soft 2 ↔ 2”). The total result
has been obtained by taking the smaller between the Fermi and the soft 2 ↔ 2 scattering results,
which limits both to their ranges of applicability, and adding to it the Born 1 ↔ 2 rate. On the right,
the total rate is shown for a number of momenta.

The corresponding diagrams are shown in figure 7. In the massless limit (this will be rectified
below), we obtain

∑

|Md|
2 ≡ −

(

6g42 +
g41 + 3g42

2
nS

)(
u2 + t2

s2

)

+
nS

2

(

g41 + 3g42
)

+

(
g21 + 3g22

2

)2(u

t
+

t

u

)

, (5.17)

∑

|Me|2 ≡
(

6g42 +
g41 + 3g42

2
nS

)(
u2 + s2

t2

)

−
nS

2

(

g41 + 3g42
)

−
(
g21 + 3g22

2

)2(u

s
+

s

u

)

, (5.18)

∑

|Mf|
2 ≡

(

3g42 +
5

3
g41

)

nG

(
u2 + s2

t2
+

u2 + t2

s2
+

t2 + s2

u2

)

+
3

4

(

g41 + 6g21g
2
2 − 3g42

)

. (5.19)

In order to simplify the last equation we have symmetrized the integrand in p1 ↔ p2 and
made use of the identity u2/(st) + t2/(su) + s2/(ut) = 3. If the phase space integrals were
finite (which they are not), eqs. (5.17)–(5.19) would suggest that k0Γ ∼ g4T 2.

In analogy with eq. (4.10), the phase space can be reduced into a 2-dimensional one:

k0Γ|hard2 → 2 =
1

(4π)3k0

∫ ∞

k0

dq+

∫ k0

0
dq−

{
[

nB(q0) + nF(q0 − k0)
]

Ξs1

+
[

nF(q0) + nB(q0 − k0)
]

Ξs2

}
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• Compare the equilibration and washout rates to the Hubble 
rate

• Fix the RHNs Yukawa couplings in a simple seesaw scenario 
with hierarchical neutrinos, with only one Yukawa coupling 
contributing to a given mass difference p
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In this regime the active neutrino interaction rate Γ is dominated by 1 → 2 decays (cf. figure 6)
and ImΠR is dominated by the indirect contribution (cf. figure 8). It is again possible to
express the dominant contribution to Γ in a simple analytic form, cf. eqs. (5.14) and (5.15).

In order to illustrate the physics significance of these results, let us first compare
the right-handed neutrino equilibration rate γIk from eq. (2.6) with the Hubble rate

H =
√

8πe/(3m2
Pl), where e is the energy density of the universe and mPl is the Planck

mass. For simplicity we consider a seesaw scenario with hierarchical neutrinos, and assume
that only one neutrino Yukawa coupling contributes to a given mass difference. Then active
neutrino mass differences are of the form |∆m| = |hIa|2v2/(2M), whereby we can eliminate
|hIa|2 from γIk to get

γIk
H

= 1.39× 105 ×
∣
∣
∣
∣

∆m

eV

∣
∣
∣
∣
×

M

k0
×

ImΠR
√

e(T )
. (7.1)

Inserting e as tabulated in ref. [41] (cf. also ref. [42]), the result is illustrated in figure 11(left).
We conclude that in the mass range M ∼ 0.5 . . . 16GeV right-handed neutrinos do equilibrate
at temperatures above T = 5GeV. Increasing the mass above 4GeV decreases the peak
equilibration rate but broadens the temperature range in which the rate is substantial.

Turning to our main observable, the lepton number washout rate from eq. (2.8), the
flavour-diagonal part of the result is shown in figure 11(right). The flavour non-diagonal
rate is an order of magnitude slower because of the smaller inverse susceptibility, cf. fig-
ure 12(right). The flavour-diagonal rate exceeds the Hubble rate for all masses considered.
However we note that this equilibration dynamics rapidly switches off in the range T <∼ 4GeV
in which dark matter computations have been carried out [19–21].

The results of figure 11(right) indicate that leptogenesis based on right-handed neutrinos
with few GeV masses remains an interesting possibility, because these degrees of freedom do
not equilibrate at T >∼ 130GeV when sphaleron processes are active [43]. In contrast it is
difficult to generate a large lepton asymmetry for low temperatures, which could boost dark
matter production in the scenario of ref. [3], because at T <∼ 30GeV lepton number violating
reactions are in equilibrium and therefore an efficient washout process takes place. It should
be acknowledged, however, that we have not performed a detailed phenomenological scan
of the whole parameter space, so the existence of fine-tuned regions where the window may
remain open cannot be excluded. The numerical results tabulated as explained in footnote 11
should hopefully permit for further work to be carried out in this direction.
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A Lepton number susceptibility matrix

Here we compute the susceptibility matrix defined below eq. (2.9) to leading order in Standard
Model couplings. Two regimes are considered: 5GeV<∼T <∼ 130GeV so that B+L violation
is out of thermal equilibrium [43]; and T >∼ 130GeV so that B+L violation is in equilibrium.
The methods of the computation have been discussed in refs. [18, 20], whereas the general
approach dates back to ref. [44].
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Cosmological implications

ḟIk = �Ik
�
nF(EI)� fIk

�
+O⇥�

nF � fIk
�2
, n2

a

⇤

�Ik =
X

a

|hIa|2Tr[ /K⇢a(K)]

EI

+O(h4)

ṅa = ��abnb +O[na(nF � fIk), n
3
a]

�ab = �
X

I

Z
d3k

(2⇡)3
2n0

F(EI)|hIa|2Tr[ /K⇢a(K)]

EI

⌅�1
ab +O(h4)

This relation applies to all orders in Standard Model couplings.

Normally, when referring to the right-handed neutrino “production rate”, it is assumed

that their number density is small, fIk ≪ nF. For this case eqs. (2.4) and (2.5) imply that

ṅI =
∑

a

∫

k

2nF(EI)|hIa|2 ImΠR(K)

EI

+O(h4, nI) . (2.7)

The same processes by which right-handed neutrinos equilibrate or are produced also violate

lepton densities carried by Standard Model particles. Because lepton numbers are violated,

their equilibrium values vanish. Close to equilibrium, the lepton densities evolve as

ṅa = −γab nb +O
[

na(nF − fIk), n
3
a

]

, (2.8)

where the matrix of decay coefficients, or “washout rates”, can be written as [18]

γab = −
∑

I

∫

k

2n′
F(EI)|hIa|2 ImΠR(K)

EI

Ξ−1
ab +O(h4) . (2.9)

Here Ξab = ∂na/∂µb|µb=0 ∼ T 2 is a susceptibility matrix related to lepton densities. It

was determined up to next-to-next-to-leading order (NNLO) in Standard Model couplings

at T >∼ 160 GeV in ref. [30], and leading-order results valid for T <∼ 160 GeV are given in

appendix A. We note that Ξ is non-diagonal, because the plasma as a whole is charge neutral,

so that changes in the number densities of different lepton flavours are correlated.

As is clear from eqs. (2.6), (2.7) and (2.9), the dynamical information that we need is

contained in the function ImΠR, obtained from eq. (2.3). We now turn to its determination.

In order to carry out a theoretically consistent computation, power-counting rules need to

be established for the various scales appearing in the problem. We denote by ht the renor-

malized top Yukawa coupling; by Nc ≡ 3 the number of colours; by g1, g2 the hypercharge

and weak gauge couplings; and by λ the Higgs self-coupling. The notation g2 refers generi-

cally to the couplings g21, g
2
2, h

2
t ,λ which are taken to be parametrically of the same order of

magnitude, and “small” in the sense that g2 ≪ π2.

Suppose that we are at a temperature T < 160 GeV so that, in gauge-fixed perturbation

theory, the neutral component of the Higgs field has an expectation value. The expectation

value is denoted by v; at T = 0, v ≃ 246 GeV. We mainly consider a regime in which v <∼T ,

even though the case mW
>∼πT , i.e. v >∼πT/g, is considered as well. For v <∼T vacuum masses

∼ gv are of the same order as thermal masses ∼ gT but much smaller than typical momenta

k ∼ πT . In other words, all particles can be considered to be ultrarelativistic. Based on

various numerical tests, this regime is numerically applicable in a rather broad temperature

range,

30GeV <∼ T <∼ 160GeV . (2.10)

4



• Peaks driven by indirect processes

• Leptogenesis possible because no equilibrium at T≳130 GeV. 
Resonant generation of keV scale RHNs hindered by 
washout at T≲30 GeV. Fine-tuned windows still possible
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Figure 10. The dependence of ImΠR/T
2 on k for M = 0.5GeV (left) and M = 2GeV (right). The

spectra at these and other temperatures can be downloaded as explained in footnote 11.
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Figure 11. Left: the right-handed neutrino equilibration rate compared with the Hubble rate,
cf. eq. (7.1), for k = 3T . Active neutrino masses correspond to |∆m|sol ≈ 8.7 × 10−3 eV; for the
atmospheric neutrino value |∆m|atm ≈ 4.9× 10−2 eV the rate is faster by a factor ∼ 5.6. Right: the
(diagonal) lepton number washout rate compared with the Hubble rate, cf. eq. (2.8).

We have shown that in the regime T >∼ 40GeV, the active neutrino interaction rate Γ
is dominated by t-channel scatterings mediated by soft gauge boson exchange (referred to
as the “soft 2 ↔ 2” contribution in figure 6). In this situation Γ is “large”, Γ ∼ g2T/π.
The explicit expression is fairly simple, cf. eq. (5.33). This large contribution originates from
contributions sensitive to momenta ∼ gT which would be quadratically infrared divergent
without the appropriate HTL resummation. There is also a subleading (linear) infrared
divergence in eq. (5.21) whose origin can also be understood (cf. appendix D).

For the masses M ∼ 0.5 . . . 2.0GeV, relevant for the SHiP experiment [14], the right-
handed neutrino equilibration rate peaks at low temperatures, T ∼ 5 . . . 30GeV (cf. figure 9).
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divergence in eq. (5.21) whose origin can also be understood (cf. appendix D).

For the masses M ∼ 0.5 . . . 2.0GeV, relevant for the SHiP experiment [14], the right-
handed neutrino equilibration rate peaks at low temperatures, T ∼ 5 . . . 30GeV (cf. figure 9).
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• Helicity asymmetries might be important to this end, since 
the peak is driven by large helicity-conserving indirect 
processes, whereas helicity-flipping ones remain small there
Eijima Shaposhnikov 1703.06085

Cosmological implications
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• I have presented evolution equations for the slow modes, 
keeping track consistently of flavour and helicity effects, as 
well as full back-reaction, at order h2

• The rates entering these evolution equations are known at 
LO in the SM for small M over a wide temperature range

• In the broken phase these rates peak at T~10-30 GeV, due to 
the efficient, resonance-like indirect processes, with 
consequences for leptogenesis and keV scale dark matter

• Spectra and code available for download at 
http://www.laine.itp.unibe.ch/production-{low,mid,high}T/
http://www.laine.itp.unibe.ch/dmpheno/ (resonant prod.)

Summary

http://www.laine.itp.unibe.ch/production-midT/
http://www.laine.itp.unibe.ch/production-midT/
http://www.laine.itp.unibe.ch/production-midT/
http://www.laine.itp.unibe.ch/production-midT/


 

Backup



Resonant sterile neutrino production
• Resonant production of right-handed neutrinos: a non-zero 

lepton asymmetry (left) creates a resonance that efficiently 
converts it into right-handed neutrino (DM) abundance (right)
JG Laine JHEP1511 (2015)
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Figure 2: The evolution of the lepton asymmetries Ya for case (a) (left) and case (e) (right). The

parameters are like in fig. 1. In case (a) Ye, Yµ grow initially, even though the source terms R±
a are

not active yet, because charged τ -leptons cannot carry their share of the asymmetry when T ≪ mτ

(YL ≡
∑

a Ya is constant). In case (e) such a re-distribution is not possible and Yµ and Yτ are exactly

conserved. The values of the initial neutrino asymmetries nνa
are given in table 1; the values of the

corresponding lepton asymmetries na = nνa
+nea

follow from eqs. (2.33)–(2.35). Lepton asymmetries

would be expected to equilibrate below T = 10 MeV [15, 16], in the region shown by a grey band,

however the rates R±
a have switched off by then so this has no effect on sterile neutrino distributions.

(c) nνe = nνµ = nντ at T = Tmax; only h1τ ̸= 0; equilibrated active flavours.

(d) nνe = nνµ = nντ at T = Tmax; only h1τ ̸= 0; non-equilibrated active flavours.

(e) only nνe ̸= 0 at T = Tmax; only h1e ̸= 0; non-equilibrated active flavours.

(f) only nνe ̸= 0 at T = Tmax; only h1µ ̸= 0; non-equilibrated active flavours.

(g) only nνe ̸= 0 at T = Tmax; only h1τ ̸= 0; non-equilibrated active flavours.

(h) only nντ ̸= 0 at T = Tmax; only h1e ̸= 0; non-equilibrated active flavours.

(i) only nντ ̸= 0 at T = Tmax; only h1µ ̸= 0; non-equilibrated active flavours.

(j) only nντ ̸= 0 at T = Tmax; only h1τ ̸= 0; non-equilibrated active flavours.

Let us reiterate that in the case of equilibrated active flavours, one would have to assume

active neutrino oscillations to proceed much faster than the processes considered in the present
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Figure 3: Examples for the evolution of the right-handed neutrino distribution fkT
for case (a) (left)

and case (e) (right), assuming that fkT
(T = 4 GeV) = 0. The final temperature is T∗ = 1 MeV, and

k∗ ≡ kT∗

denotes momenta at this temperature. The parameters are like in figs. 1, 2. For smallish

k∗/T∗ most of the production takes place at the lower resonance temperature (cf. fig. 1).

paper, which is unlikely to happen at T > 10 MeV [15, 16]. Nevertheless we display the results

in order to allow for a comparison with ref. [7], to be performed in sec. 5.

The initial state is parametrized by the neutrino asymmetry normalized to the entropy

density, nνa/s. The mixing angles are parametrized through

sin2(2θ) ≡
∑

a=e,µ,τ

4θ21a , θ21a ≡
|MD|21a
M2

1

, (4.1)

which is the combination that appears in the (inclusive) decay rate of sterile neutrinos to

an active neutrino and a photon. We consider the value sin2(2θ) ≈ 7 × 10−11 mentioned in

ref. [10] and the limits of sin2(2θ) ∼ (2 − 20) × 10−11 from ref. [11]. Confining effects are

modelled through the phenomenological replacement Nc → Nc,eff as suggested in ref. [27].

(In ref. [27] it was checked that this recipe is consistent with Chiral Perturbation Theory at

low T ; unfortunately Chiral Perturbation Theory is not applicable at T >∼ 100 MeV.)

In fig. 1, the two resonance locations (in each channel) are shown for the cases (a) and (e).

In fig. 2, the evolution of the densities Ya is shown, and in fig. 3 the same is done for the

distribution function fkT . The ratio Ω1/ΩDM from eq. (3.28) is illustrated in fig. 4, whereas

the differential shape of fkT at T = T∗ = 1 MeV can be inferred from figs. 5 and 6. The

initial neutrino densities yielding the correct dark matter abundances in all cases (a)-(j) are

summarized in table 1. It is remarkable that despite quite different asymmetries (cf. table 1),

16

mN = 7.1 keV


