Flavour and CP symmetries/CP violation

with Talk of Mu-Chun Chen

Morimitsu Tanimoto

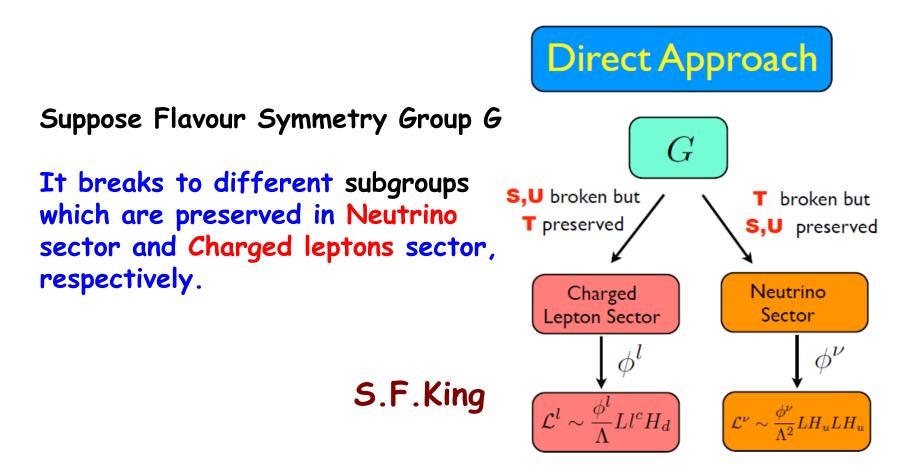
Niigata University

Neutrinos institute : the quest for a new physics scale March. 28, 2017 CERN, Geneva, Switzerland

Discrete Symmetry predicts neutrino mixing angles

and CP violating phase δ_{CP}

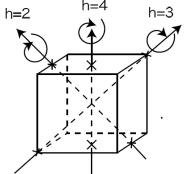
How to predict the flavour mixing angles based on Flavour Symmetry



arXiv: 1402.4271 King, Merle, Morisi, Simizu, M.T

Simple Examples

 S_4 group



24 elements are generated by S, T and U: S²=T³=U²=1, ST³ = (SU)² = (TU)² = (STU)⁴ =1 Irreducible representations: 1, 1', 2, 3, 3' It has subgroups, nine Z₂, four Z₃, three Z₄, four Z₂×Z₂ (K₄)

Suppose S_4 is spontaneously broken to one of subgroups: Neutrino sector preserves (1,S,U,SU) (K₄) Charged lepton sector preserves (1,T,T²) (Z₃)

For 3 and 3'
$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0\\ 0 & \omega^2 & 0\\ 0 & 0 & \omega \end{pmatrix}; \quad \omega = e^{2\pi i/3}$$
$$U = \mp \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & 1 & 0 \end{pmatrix}$$

Then, neutrinos respect S and U charged leptons respect T, respectively:

Mixing matrices diagonalize mass matrices also diagonalize S,U, and T, respectively ! The charged lepton mass matrix is diagonal because T is diagonal matrix.

$$V_{\nu} = \begin{pmatrix} 2/\sqrt{6} & /1\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

Tri-bimaximal mixing $\theta_{13}=0$

C.S.Lam, PRD98(2008) arXiv:0809.1185

which digonalizes both S and U.

Independent of mass eigenvalues !

Klein Symmetry can reproduce Tri-bimaximal mixing.

If S₄ is spontaneously broken to another subgroups, eg. Neutrino sector preserves (1,SU) (Z₂) Charged lepton sector preserves (1,T,T²) (Z₃), Obtained flavour mixing matrix is changed!

$$(SU)^{T} m_{LL}^{\nu} SU = m_{LL}^{\nu}, \quad T^{\dagger} Y_{e} Y_{e}^{\dagger} T = Y_{e} Y_{e}^{\dagger}$$
$$[SU, m_{LL}^{\nu}] = 0, \quad [T, Y_{e} Y_{e}^{\dagger}] = 0$$
$$V_{\nu} = \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0\\ -c/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

which digonalizes SU.

Eigenvalues of SU (-1,1,1)

There is a freedom of the rotation between 2nd and 3rd column because a column corresponds to a mass eigenvalue.

$$V_{\nu} = \begin{pmatrix} 2/\sqrt{6} & c/\sqrt{3} & s/\sqrt{3} \\ -1/\sqrt{6} & c/\sqrt{3} - s/\sqrt{2} & -s/\sqrt{3} - c/\sqrt{2} \\ -1/\sqrt{6} & c/\sqrt{3} + s/\sqrt{2} & -s/\sqrt{3} - c/\sqrt{2} \\ c/\sqrt{3} + s/\sqrt{2} & -s/\sqrt{3} + c/\sqrt{2} \end{pmatrix}$$

$$c = \cos\theta, \ s = \sin\theta \quad \text{includes CP phase.}$$
Tri-maximal mixing Semi-direct model TM1

 $\boldsymbol{\theta}$ is not fixed by the flavor symmetry,

Mixing sum rules

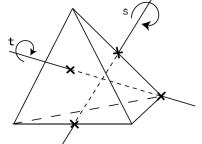
$$\sin^2 \theta_{23} = \frac{1}{2} \frac{1}{\cos^2 \theta_{13}} \ge \frac{1}{2} , \quad \sin^2 \theta_{12} \simeq \frac{1}{\sqrt{3}} - \frac{2\sqrt{2}}{3} \sin \theta_{13} \cos \delta_{CP} + \frac{1}{3} \sin^2 \theta_{13} \cos 2\delta_{CP}$$

7

A₄ group

Symmetry of tetrahedron

 A_4 has subgroups: three Z_2 , four Z_3 , one $Z_2 \times Z_2$ (klein four-group)



 Z_2 : {1,S}, {1,T²ST}, {1,TST²} Z_3 : {1,T,T²}, {1,ST,T²S}, {1,TS, ST²}, {1,STS,ST²S} K_4 : {1,S,T²ST,TST²}

Suppose A₄ is spontaneously broken to one of subgroups: Neutrino sector preserves Z_2 : {1,S} Charged lepton sector preserves Z_3 : {1,T,T²} $S^T m_{LL}^{\nu} S = m_{LL}^{\nu}, \quad T^{\dagger} Y_e Y_e^{\dagger} T = Y_e Y_e^{\dagger}$ $[S, m_{LL}^{\nu}] = 0, \quad [T, Y_e Y_e^{\dagger}] = 0$

Mixing matrices diagonalise $m_{LL}^{\nu},\ Y_eY_e^{\dagger}$ also diagonalize S and T, respectively !

Then, we obtain PMNS matrix.

$$V_{\nu} = \begin{pmatrix} 2c/\sqrt{6} & 1/\sqrt{3} & 2s/\sqrt{6} \\ -c/\sqrt{6} + s/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} - c/\sqrt{2} \\ -c/\sqrt{6} - s/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} + c/\sqrt{2} \end{pmatrix}$$

$$c = \cos \theta, \quad s = \sin \theta$$

Tri-maximal mixing : so called TM2θ is not fixed.Semi-direct model

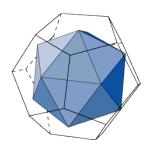
In general, the complex phase is attached. CP symmetry can predict this phase.

$$\sin^2 \theta_{12} = \frac{1}{3} \frac{1}{\cos^2 \theta_{13}} \ge \frac{1}{3} , \qquad \cos \delta_{CP} \tan 2\theta_{23} \simeq \frac{1}{\sqrt{2} \sin \theta_{13}} \left(1 - \frac{5}{4} \sin^2 \theta_{13} \right)$$

 A_5 group

which is isomorphic to the symmetry of regular icosahedron and a regular dodecahedron.





It has subgroups, ten Z_3 , six Z_5 , five $Z_2 \times Z_2$ (K₄).

Suppose A_5 is spontaneously broken to one of subgroups: Neutrino sector preserves S and U (K₄) Charged lepton sector preserves T (Z₅)

$$\begin{bmatrix} S^{T} m_{LL}^{\nu} S = m_{LL}^{\nu}, & U^{T} m_{LL}^{\nu} U = m_{LL}^{\nu}, \\ \begin{bmatrix} T^{\dagger} Y_{e} Y_{e}^{\dagger} T = Y_{e} Y_{e}^{\dagger} \end{bmatrix} \\ \begin{bmatrix} S, m_{LL}^{\nu} \end{bmatrix} = 0, & \begin{bmatrix} U, m_{LL}^{\nu} \end{bmatrix} = 0, \\ \begin{bmatrix} T, Y_{e} Y_{e}^{\dagger} \end{bmatrix} = 0 \end{bmatrix}$$
$$\begin{bmatrix} S = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & -\phi & \frac{1}{\phi} \\ \sqrt{2} & \frac{1}{\phi} & -\phi \end{pmatrix} \qquad \mathsf{T} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{2\pi i}{5} & 0 \\ 0 & 0 & \frac{8\pi i}{5} \end{pmatrix} \qquad U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

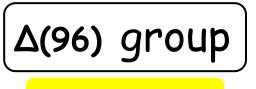
F. Feruglio and Paris, JHEP 1103(2011) 101 arXiv:1101.0393

$$U_{GR} = \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0\\ \frac{\sin \theta_{12}}{\sqrt{2}} & -\frac{\cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin \theta_{12}}{\sqrt{2}} & -\frac{\cos \theta_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \quad \boldsymbol{\theta}_{13} = \boldsymbol{0}$$
$$\tan \theta_{12} = 1/\phi \quad : \quad \phi = \frac{1+\sqrt{5}}{2} \quad \boldsymbol{Golden ratio}$$

Neutrino mass matrix has μ - τ symmetry.

$$m_{\nu} = \begin{pmatrix} x & y & y \\ y & z & w \\ y & w & z \end{pmatrix} \quad \text{with} \quad z + w = x - \sqrt{2}y$$

 $\sin^2 \theta_{12} = 2/(5+\sqrt{5}) = 0.2763...$ which is rather smaller than the experimental data. $\sin^2 \theta_{12} = 0.306 \pm 0.012$ The model should be modified. Since simple patterns predict vanishing θ_{13} , larger groups may be used to obtain non-vanishing θ_{13} .



 $(Z_4 \times Z_4) \ltimes S_3$

R.de Adelhart Toorop, F.Feruglio, C.Hagedorn, Phys. Lett 703} (2011) 447 G.J.Ding, Nucl. Phys.B 862 (2012) 1 S. F.King, C.Luhn and A.J.Stuart, Nucl.Phys.B867(2013) 203 G.J.Ding and S.F.King, Phys.Rev.D89 (2014) 093020 C.Hagedorn, A.Meroni and E.Molinaro, Nucl.Phys. B 891 (2015) 499

Generator S, T and U : $S^{2}=(ST)^{3}=T^{8}=1$, $(ST^{-1}ST)^{3}=1$

Irreducible representations: 1, 1', 2, $3_1 - 3_6$, 6

Subgroup : fifteen Z_2 , sixteen Z_3 , seven K_4 , twelve Z_4 , six Z_8

For triplet 3,
$$S = \frac{1}{2} \begin{pmatrix} 0 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & -1 & 1 \\ \sqrt{2} & 1 & -1 \end{pmatrix}$$
 $T = \begin{pmatrix} e^{\frac{6\pi i}{4}} & 0 & 0 \\ 0 & e^{\frac{7\pi i}{4}} & 0 \\ 0 & 0 & e^{\frac{3\pi i}{4}} \end{pmatrix}$

Neutrino sector preserves {S, ST^4ST^4 } ($Z_2 \times Z_2$) Charged lepton sector preserves ST (Z_3)

$$U_{TFH1} = \begin{pmatrix} \frac{1}{6}(3+\sqrt{3}) & \frac{1}{\sqrt{3}} & \frac{1}{6}(-3+\sqrt{3}) \\ \frac{1}{6}(-3+\sqrt{3}) & \frac{1}{\sqrt{3}} & \frac{1}{6}(3+\sqrt{3}) \\ -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \end{pmatrix}$$

 Θ_{13} ~12° rather large

In order to build models (effective Lagrangian), flavons are introduced: indirect approach

Flavor symmetry G is (partially, completely) broken by flavon (SU₂ singlet scalors) VEV's. Flavor symmetry controls couplings among leptons and flavons with special vacuum alignments.

 $\begin{array}{c|cccc} \textbf{A}_{4} \mbox{ model } & \mbox{ Leptons } & \mbox{ flavons } \\ \textbf{A}_{4} \mbox{ triplets } & (L_{e}, L_{\mu}, L_{\tau}) & (\phi_{\nu}(\phi_{\nu 1}, \phi_{\nu 2}, \phi_{\nu 3})) & \mbox{ couple to neutrino sector } \\ \phi_{E}(\phi_{E1}, \phi_{E2}, \phi_{E3}) & \mbox{ couple to charged lepton sector } \\ \textbf{A}_{4} \mbox{ singlets } & e_{R} : 1 \ \mu_{R} : 1" \ \tau_{R} : 1' & \ \textbf{G. Altarelli, F. Feruglio, Nucl.Phys. B720 (2005) 64} \end{array}$

CG coefficients of flavon couplings are determined by the flavour symmetry.

Flavor symmetry G is broken by VEV of flavons

$$\begin{array}{ccc} \mathbf{3}_{\mathrm{L}} \times \mathbf{3}_{\mathrm{L}} \times \mathbf{3}_{\mathrm{flavon}} \to \mathbf{1} & \mathbf{3}_{\mathrm{L}} \times \mathbf{1}_{\mathrm{R}} (\mathbf{1}_{\mathrm{R}}^{*}, \mathbf{1}_{\mathrm{R}}^{*}) \times \mathbf{3}_{\mathrm{flavon}} \to \mathbf{1} \\ m_{\nu LL} \sim y \begin{pmatrix} 2\langle \phi_{\nu 1} \rangle & -\langle \phi_{\nu 3} \rangle & -\langle \phi_{\nu 2} \rangle \\ -\langle \phi_{\nu 3} \rangle & 2\langle \phi_{\nu 2} \rangle & -\langle \phi_{\nu 1} \rangle \\ -\langle \phi_{\nu 2} \rangle & -\langle \phi_{\nu 1} \rangle & 2\langle \phi_{\nu 3} \rangle \end{pmatrix} & m_{E} \sim \begin{pmatrix} y_{e} \langle \phi_{E1} \rangle & y_{e} \langle \phi_{E3} \rangle & y_{e} \langle \phi_{E2} \rangle \\ y_{\mu} \langle \phi_{E1} \rangle & y_{\mu} \langle \phi_{E3} \rangle \\ y_{\tau} \langle \phi_{E3} \rangle & y_{\tau} \langle \phi_{E2} \rangle & y_{\tau} \langle \phi_{E1} \rangle \end{pmatrix}$$

However, specific Vacuum Alingnments preserve the symmetries of S and T.

Take
$$\langle \phi_{\nu 1} \rangle = \langle \phi_{\nu 2} \rangle = \langle \phi_{\nu 3} \rangle$$
 and $\langle \phi_{E2} \rangle = \langle \phi_{E3} \rangle = 0$
 $\Rightarrow \langle \phi_{\nu} \rangle \sim (1, 1, 1)^T$, $\langle \phi_E \rangle \sim (1, 0, 0)^T$

$$S \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

Then, $\langle \phi_{\nu} \rangle$ preserves S (Z₂) and $\langle \phi_{E} \rangle$ preserves T(Z₃).

 m_E is a diagonal matrix, on the other hand, m_{vLL} is

$$m_{\nu LL} \sim 3y \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - y \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

two generated masses and one massless neutrinos ! (0, 3y, 3y) Flavor mixing is not yet fixed ! Adding A_4 singlet $\xi : 1$ gives flavor mixing matrix.

$$\mathbf{3_{L}} \times \mathbf{3_{L}} \times \mathbf{1_{flavon}} \to \mathbf{1}$$

$$m_{\nu LL} \sim y_{1} \begin{pmatrix} 2\langle \phi_{\nu 1} \rangle & -\langle \phi_{\nu 3} \rangle & -\langle \phi_{\nu 2} \rangle \\ -\langle \phi_{\nu 3} \rangle & 2\langle \phi_{\nu 2} \rangle & -\langle \phi_{\nu 1} \rangle \\ -\langle \phi_{\nu 2} \rangle & -\langle \phi_{\nu 1} \rangle & 2\langle \phi_{\nu 3} \rangle \end{pmatrix} + y_{2} \langle \xi \rangle \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\langle \phi_{\nu 1} \rangle = \langle \phi_{\nu 2} \rangle = \langle \phi_{\nu 3} \rangle, \text{ which preserve S symmetry.} \qquad \mathbf{A_{4} \text{ invariant}}$$

$$m_{\nu LL} = 3a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} - a \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

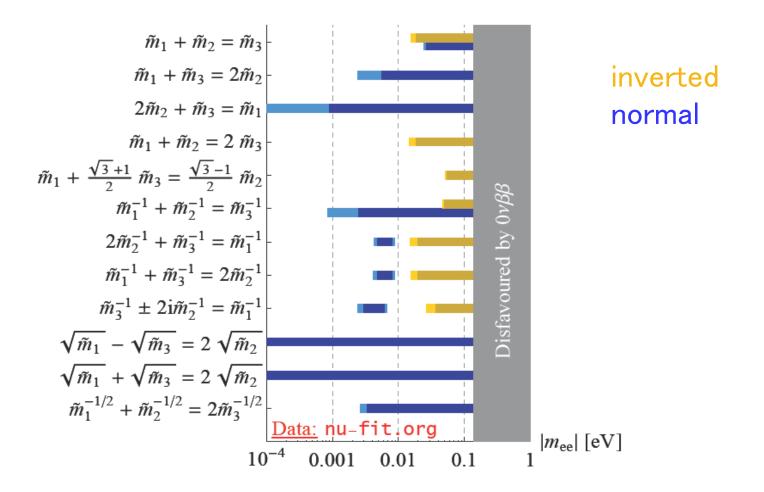
Flavor mixing is determined: Tri-bimaximal mixing. $\theta_{13}=0$

$$m_{\nu} = 3a + b, \ b, \ 3a - b \ \Rightarrow m_{\nu_1} - m_{\nu_3} = 2m_{\nu_2}$$

Flavons predict Neutrino Mass Sum Rule.

* Additional A_4 singlet 1' gives non-vanishing θ_{13} and different masses.

Restrictions by mass sum rules on $|\mathbf{m}_{ee}|$



King, Merle, Stuart, JHEP 2013, arXiv:1307.2901

Challenge for CP violation of leptons

Talk of Mu-Chun Chen

CP phase δ_{CP} is related with Flavour Symmetry.

A hint : under μ -T symmetry $|U_{\mu i}| = |U_{\tau i}| \ i = 1, 2, 3$ $\cos \theta_{23} = \sin \theta_{23} = \frac{1}{\sqrt{2}}$ $\sin \theta_{13} \cos \delta = 0$

 $\delta = \pm \frac{\pi}{2}$ is predicted since we know $\theta_{13} \neq 0$

Ferreira, Grimus, Lavoura, Ludl, JHEP2012, arXiv: 1206.7072

CP violation is constrained by Flavour symmetries !

Generalized CP Symmetry

\Rightarrow How will be Flavor Symmetry tested ?

* Mixing angle sum rules

Example: **S**₄ (TM!)
$$\sin^2 \theta_{23} = \frac{1}{2} \frac{1}{\cos^2 \theta_{13}} \ge \frac{1}{2}$$
, $\sin^2 \theta_{12} \simeq \frac{1}{\sqrt{3}} - \frac{2\sqrt{2}}{3} \sin \theta_{13} \cos \delta_{CP} + \frac{1}{3} \sin^2 \theta_{13} \cos 2\delta_{CP}$
A₄ (TM2) $\sin^2 \theta_{12} = \frac{1}{3} \frac{1}{\cos^2 \theta_{13}} \ge \frac{1}{3}$, $\cos \delta_{CP} \tan 2\theta_{23} \simeq \frac{1}{\sqrt{2} \sin \theta_{13}} \left(1 - \frac{5}{4} \sin^2 \theta_{13}\right)$
A₅ $\sin^2 \theta_{12} = \frac{\sin^2 \varphi}{1 - \sin^2 \theta_{13}} \approx \frac{0.276}{1 - \sin^2 \theta_{13}} \qquad \sin^2 \theta_{23} \approx \frac{1}{2} \left(1 \pm (1 - \sqrt{5}) \sin \theta_{13}\right)$

A.Di Iura, C.Hagedorn and D.Meloni, JHEP1508 (2015) 037

*Neutrino mass sum rules in FLASY \Leftrightarrow neutrinoless double beta decays

* Prediction of CP violating phase, which may be correlated with θ_{ij}

\Rightarrow Flavon at TeV scale ? Testable at LHC ?

Back up slides

Familiar non-Abelian finite groups

S _n :	S ₂ =Z ₂ , S ₃ , S ₄	Symmetric group	order N !
A _n :	A ₃ =Z ₃ , A ₄ =T, A ₅	Alternating group	(N !)/2
D _n :	D ₃ =S ₃ , D ₄ , D ₅	Dihedral group	2N
Q _{N(even)} :	Q ₄ , Q ₆	Binary dihedral group	2N
Σ(2N ²):	: Σ(2)=Ζ ₂ , Σ(18), Σ(32), Σ(50) …		2N ²
Δ(3N ²):	2): $\Delta(12) = A_4$, $\Delta(27)$		
$T_{N(prime number)} \begin{array}{cc} Z_{N} & Z_3 \\ \simeq & \ltimes \end{array} : T_7, \ T_{13}, \ T_{19}, \ T_{31}, \ T_{43}, \ T_{49}$			3N
Σ(3N ³):	$\Sigma(24) = Z_2 \times \Delta(12), \Sigma(81)$		3N ³
Δ(6N ²):	$\Delta(6) = S_3, \Delta(24) = S_4, \Delta(5)$	4)	6N ²

T': double covering group of A_4 =T 24

In order to obtain non-zero θ_{13} , A_5 should be broken to other subgroups: for example, Neutrino sector preserves S or $T^2ST^3ST^2$ (both are K_4 generator) Charged lepton sector preserves T (Z₅)

$$\begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0\\ \frac{\sin\theta_{12}}{\sqrt{2}} & -\frac{\cos\theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin\theta_{12}}{\sqrt{2}} & -\frac{\cos\theta_{12}}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \times \begin{pmatrix} \cos\theta & 0 & \sin\theta\\ 0 & 1 & 0\\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$$
$$\tan\theta_{12} = 1/\phi, \quad \phi = \frac{1+\sqrt{5}}{2}$$

Θ is not fixed, however, there appear testable sum rules:

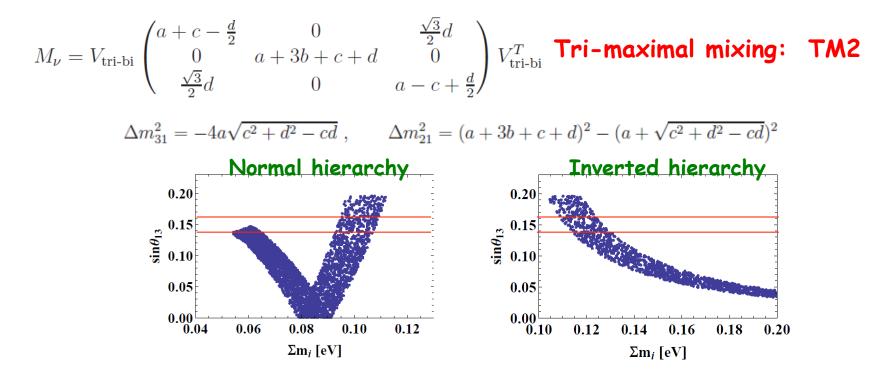
$$\sin^2 \theta_{12} = \frac{\sin^2 \varphi}{1 - \sin^2 \theta_{13}} \approx \frac{0.276}{1 - \sin^2 \theta_{13}} \qquad \qquad \sin^2 \theta_{23} \approx \frac{1}{2} \left(1 \pm (1 - \sqrt{5}) \sin \theta_{13} \right)$$

A.Di Iura, C.Hagedorn and D.Meloni, JHEP1508 (2015) 037

Additional Matrix

$$M_{\nu} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + b \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} + c \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$a = \frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{\Lambda}, \qquad b = -\frac{y_{\phi_{\nu}}^{\nu} \alpha_{\nu} v_{u}^{2}}{3\Lambda}, \qquad c = \frac{y_{\xi}^{\nu} \alpha_{\xi} v_{u}^{2}}{\Lambda}, \qquad d = \frac{y_{\xi'}^{\nu} \alpha_{\xi'} v_{u}^{2}}{\Lambda} \qquad a = -3b$$

Both normal and inverted mass hierarchies are possible.



22

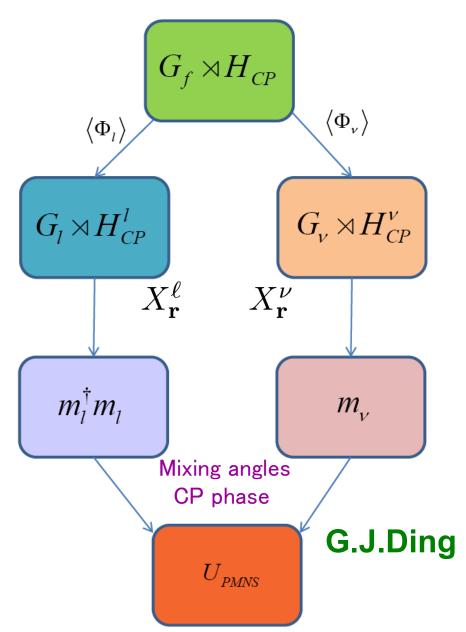
Suppose a symmetry including FLASY and CP symmetry: $G_{CP} = G_f \rtimes H_{CP}$

is broken to the subgroups in neutrino sector and charged lepton sector.

CP symmetry gives

$$X_{\mathbf{r}}^{\nu T} m_{\nu LL} X_{\mathbf{r}}^{\nu} = m_{\nu LL}^{*}$$

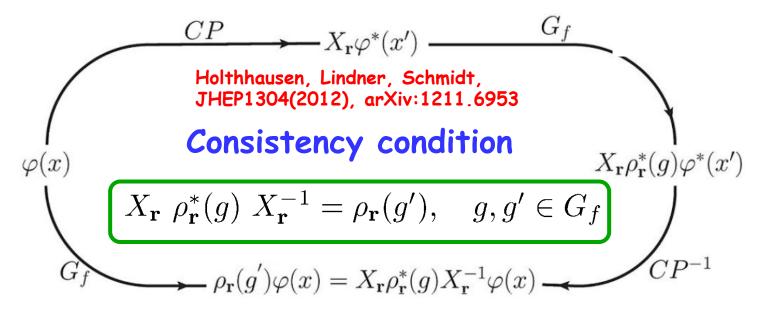
$$X_{\mathbf{r}}^{\ell\dagger}(m_{\ell}^{\dagger}m_{\ell})X_{\mathbf{r}}^{\ell} = (m_{\ell}^{\dagger}m_{\ell})^{*}$$



Generalized CP Symmetry
CP Symmetry
$$\varphi(x) \xrightarrow{\mathbf{CP}} X_{\mathbf{r}} \varphi^*(x'), \quad x' = (t, -\mathbf{x}) \begin{bmatrix} X_{\mathbf{r}}^{\nu T} m_{\nu LL} X_{\mathbf{r}}^{\nu} = m_{\nu LL}^* \\ X_{\mathbf{r}}^{\ell\dagger} (m_{\ell}^{\dagger} m_{\ell}) X_{\mathbf{r}}^{\ell} = (m_{\ell}^{\dagger} m_{\ell})^* \end{bmatrix}$$

Flavour Symmetry $\varphi(x) \xrightarrow{\mathbf{g}} \rho_{\mathbf{r}}(g) \varphi^*(x), \quad g \in G_f$

${f X_r}$ must be consistent with Flavour Symmetry $ho_{f r}(g)$



²⁴ Mu-Chun Chen, Fallbacher, Mahanthappa, Ratz, Trautner, Nucl.Phys. B883 (2014) 267–305

Origin of Flavor symmetry

Is it possible to realize such discrete symmetres in string theory? Answer is yes !

Superstring theory on a certain type of six dimensional compact space leads to stringy selection rules for allowed couplings among matter fields in four-dimensional effective field theory.

Such stringy selection rules and geometrical symmetries result in discrete flavor symmetries in superstring theory.

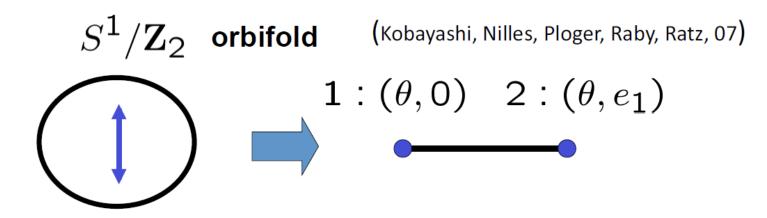
- Heterotic orbifold models (Kobayashi., Nilles, Ploger, Raby, Ratz, 07)
- Magnetized/Intersecting D-brane Model (Kitazawa, Higaki, Kobayashi, Takahashi, 06) (Abe, Choi, Kobayashi, HO, 09, 10)

Stringy origin of non-Abelian discrete flavor symmetries T. Kobayashi, H. Niles, F. PloegerS, S. Raby, M. Ratz, hep-ph/0611020 D_4 , $\Delta(54)$

Non-Abelian Discrete Flavor Symmetries from Magnetized/Intersecting Brane Models H. Abe, K-S. Choi, T. Kobayashi, H. Ohki, 0904.2631 D_4 , $\Delta(27)$, $\Delta(54)$

Non-Abelian Discrete Flavor Symmetry from T²/Z_N Orbifolds A.Adulpravitchai, A. Blum, M. Lindner, 0906.0468 A₄, S₄, D₃, D₄, D₆

Non-Abelian Discrete Flavor Symmetries of 10D SYM theory with Magnetized extra dimensions H. Abe, T. Kobayashi, H. Ohki, K.Sumita, Y. Tatsuta 1404.0137 S_3 , $\Delta(27)$, $\Delta(54)$



There are two fixed point under the orbifold twist

These two fixed points can be represented by space group elements which act (θ, v) $(\theta, v)\alpha = \theta\alpha + v$ e_1 : shift vector in one torus $(y \sim y + e_1)$ charge assignment of \mathbb{Z}_2 : $\begin{pmatrix} 1\\2 \end{pmatrix} \rightarrow \begin{pmatrix} 1&0\\0&-1 \end{pmatrix} \begin{pmatrix} 1\\2 \end{pmatrix}$ (stringy selection rule: Coupling is only allowed in matching of the string boundary conditions)

Discrete flavor symmetry from orbifold S^1/\mathbb{Z}_2

This effective Lagrangian also have permutation symmetry of these two fixed point (orbifold geometry).

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
Closed algebra of these transformations $\left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\}$

$$\implies D_4 \sim S^2 \cup (\mathbf{Z}_2 \times \mathbf{Z}_2)$$
Two field localized at two fixed points : doublet of D4 **2**

Bulk mode (untwisted mode) : singlet of D4 1

Thus full symmetry is larger than geometric symmetry

Mass sum rules in A_4 , T', S_4 , A_5 , $\Delta(96)$...

(Talk of Spinrath) Barry, Rodejohann, NPB842(2011) arXiv:1007.5217

Different types of neutrino mass spectra correspond to the neutrino mass generation mechanism.

$$\begin{split} \chi \tilde{m}_2 + \xi \tilde{m}_3 &= \tilde{m}_1 \quad (X=2, \xi=1) \quad (X=-1, \xi=1) \\ \frac{\chi}{\tilde{m}_2} + \frac{\xi}{\tilde{m}_3} &= \frac{1}{\tilde{m}_1} \quad \mathbf{M}_{\mathsf{R}} \text{ structre in See-saw} \\ \chi \sqrt{\tilde{m}_2} + \xi \sqrt{\tilde{m}_3} &= \sqrt{\tilde{m}_1} \quad \mathbf{M}_{\mathsf{D}} \text{ structre in See-saw} \\ \frac{\chi}{\sqrt{\tilde{m}_2}} + \frac{\xi}{\sqrt{\tilde{m}_3}} &= \frac{1}{\sqrt{\tilde{m}_1}} \quad \mathbf{M}_{\mathsf{R}} \text{ in inverse See-saw} \end{split}$$

X and ξ are model specific complex parameters

King, Merle, Stuart, JHEP 2013, arXiv:1307.2901 King, Merle, Morisi, Simizu, M.T, arXiv: 1402.4271