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What is the origin of discrete 
flavour symmetry?

Broken gauge symmetry?

Extra dimensions?

String theory?

...?



Broken gauge theory
Start with a continuous gauge group e.g. SU(3) 

Then break to “discrete gauge symmetry” using 
Higgs in large reps of SU(3)

E.g. Luhn https://arxiv.org/pdf/1101.2417.pdf  

finite subgroup G 3 6 8 10 15 15′ 21 24 27

A4 = ∆(12) − 1 − 1 1 2 1 2 3

∆(27) − − − 2 − − − − 3

S4 = ∆(24) − 1 − − − 2 − 1 2

∆(54) − − − − − − − − 3

Z7 !Z3 = T7 − − − 1 1 1 1 1 1

PSL2(7) = Σ(168) − − − − − 1 − − −

Table 2: The number of singlets of G within each SU(3) irrep for various finite subgroups.

The same procedure can be repeated for any other finite subgroup G of SU(3) [18–27].
This way it is possible to identify those irreps which can potentially break SU(3) down
to G. Table 2 summarizes these results by listing the number of singlets of G within each
SU(3) irrep for various finite subgroups.

3 Finding the singlet direction

In the previous section we have determined the SU(3) irreps that contain singlets of the
finite subgroup G. The next step is to find the directions of these representation which
correspond to the singlets. It is worth emphasizing that such singlet VEVs may or may not
break SU(3) directly to the desired finite group G. In the latter case, a bigger subgroup
of SU(3) is left intact and the breaking to G can be achieved sequentially by adding a
second irrep with an appropriate singlet VEV.1 Focusing on the smallest irreps we confine
ourselves to the 6, 10 and 15 in the following. We construct them using the fundamental
triplet.

The three orthonormal states of an SU(3) triplet are denoted by | i 〉, with i = 1, 2, 3.
Then we can express a general triplet as a linear combination

3
∑

i=1

ϕi| i 〉 , (3.1)

with ϕi being the components of the state.
The 6 of SU(3) corresponds to the symmetric product of two triplets. Using the

compact notation | ij 〉 ≡ | i 〉 ⊗ | j 〉 we can define six orthonormal states |α }, where
α = 1, ..., 6, as follows

| 1 } = | 11 〉 , | 2 } = | 22 〉 , | 3 } = | 33 〉 ,
1An example of such a sequential breaking is discussed in section 4. There we will show that A4

cannot be obtained directly from the 6 or 10 alone but only their combination.
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Extra dimensions
E.g. Altarelli, Feruglio, Lin                           
https://arxiv.org/abs/hep-ph/0610165

6-d compactified into a torus on an orbifold      
T2/Z2 a gives A4 tetrahedral symmetry
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Figure 2.4: The Orbifold 2/
2

. The fundamental domain is outlined in
bold and forms a tetrahedron. Regions labelled by A,B,C and D are identified.
The fixed points are labelled zi and are symmetrically permuted under the
symmetry group A

4

.

by identifying the points:

z ! z + 2, (2.6.1)

z ! z + � � = ei
�
3 . (2.6.2)

We have set the length 2⇡R
1,2 to unity for clarity. The orbifolding is defined by the

parity
2

identifying:

z ! �z, (2.6.3)
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leaving the orbifold to be represented by the bold triangular region shown in figure 2.4.

The orbifold has 4 fixed points which are unchanged under the symmetries of the

orbifold, equations (2.6.3),(2.6.1),(2.6.2). The orbifold can be described as a regular

tetrahedron with the fixed points as the vertices. The 6d spacetime symmetry is

broken by the orbifolding, previously the symmetry consisted of 6d translations and

proper Lorentz transformations⇤. We are now left with a 4d space-time symmetry

and a discrete symmetry of rotations and translations due to the special geometry of

�if we had allowed improper Lorentz transformations,i.e. reflections, then rather than A
4

we
would have S

4

the group of permutations of 4 objects

50

Figure 19: In a 6-d theory the extra dimensions complexified as z = x
5

+ ix
6

may be compactified into a torus T 2. The
orbifold T 2/Z

2

is based on the twisted torus with a twist angle of 60�, with fixed points zi. The Z
2

orbifolding then folds
the rhombus into a tetrahedron (the fundamental domain in bold) giving rise to A

4

symmetry, with the regions A,B,C,D
identified respectively.

Figure 1: The web of dualities

through an intricate web of dualities (Figure 1). In this sense, there is evidence that despite the apparent multitude
of di↵erent theories, these are in fact di↵erent faces of a single unified theory.

In light of the success that led to the discovery of M-Theory, Vafa [2] applied a similar non-perturbative limit
to type II-B theory, in which he found that the theory could e↵ectively be described as a 12-dimensional theory,
despite the fact there are no sensible 12-dimensional supergravity theories. This limit was called F-Theory, and while
very recent it is being heavily studied and developed. More interestingly, F-Theory it has been proven to be a rich
framework for model build of SUSY GUTs.

SO(10) SUSY GUTS from M Theory on G2 Manifolds

While the full formulation of M-Theory is still unknown and home to a lot of speculation, its low energy limit as a
11-dimensional supergravity can be used to probe physics in an M-Theoretical context. When we refer to M-Theory
as a framework to do phenomenology we are then referring to the 11-dimensional supergravity theory as the starting
point and not the unknown full membrane theory,

The viability of M-Theory as a starting point for phenomenology started as it was shown – by Bobby Acharya and
collaborators [3] – when the extra seven dimensions are compactified on singular G

2

holonomy manifolds, M-Theory
would be endowed with gauge interactions and chiral superfields in gauge irreps. This happens as the compactified
space admits a 3-fold with an orbifold singularity supporting the gauge fields, while localised conical singularities on
this 3-fold support chiral superfields in irreps of the associated gauge interaction. The conical singularities are of
ADE-type, and this construction is engineered in analogy with Heterotic compactification setups.

A crucial point of the framework is that if the compactification is fluxless the moduli fields cannot have a perturba-
tive superpotential due to an exact Peccei-Quinn symmetry. This symmetry enforces the axions – which are the real
moduli complex partners in the chiral superfield – to have a shift-symmetry that in conjugation with holomorphicity
prevents non-perturbative contributions to the superpotential [4]. As a consequence, moduli only couple to matter chi-
ral superfields through Kahler interactions and have an exponentially suppressed superpotential contribution through
non-perturbative membrane instantons actions. As the superpotential is the order parameter of SUSY breaking, this
then means there will be a natural suppression between non-SUSY mechanics and the Planck scale [5].

Early semi-realistic constructions involved an SU(5) gauge group, for each the derived model was named G
2

MSSM
as it also had the same particle content as of the MSSM. The model relied in an idea by Witten [6], where the
combination of geometric discrete symmetries and the topological nature of the compactified space, provide a natural
discrete symmetry that does not commute with the gauge group. This in turn allows one to allow for a GUT scale
mass to the triplet coloured partners of the MSSM Higgses, and therefore solve the doublet-triplet problem of SU(5)
SUSY GUTs.

The original model/approach, su↵ered some shortcomings, for example neutrinos only have Majorana mass term,
and R-parity violation constraints are not naturally/generically met. Furthermore, there is a natural expectation that
the resulting 4-dimensional theory could be realised with a larger GUT group as such constructions are normal in
order corners of string/M-Theory.

One has then the motivation to search for larger gauge group realisations of M-Theory compactified onG
2

manifolds.
With this in mind we (me, Steve, and our collaborators in King’s College London Acharya, Bozek, Pongkitivanichkul)
started out by looking for E

6

realisations in an attempt to make a connection to some results from E
6

MSSM [7].

Early work on E
6

There are some crucial quantities in this framework called Wilson lines. Since the compactified space needs not to be
simply connected (meaning that the fundamental group ⇡

1

is not trivial, hence allowing the space to have holes and

2

Figure 20: The duality web of string theories against the background of a Calabi-Yao manifold.

Originally it was hoped that there would be a unique superstring theory based on heterotic string
theory with E

8

⇥ E
8

(HE) or SO(32) (HO) in d = 10 dimensions, where the six extra dimensions are
typically compactified on an orbifold (for a review see e.g. [177]). It is possible to understand the origin
of discrete family symmetry within the framework of HE theories with orbifold compactification. Indeed
there has been some interesting work on heterotic string theory in which flavoured GUTs, i.e. GUTs
together with discrete family symmetry, can arise from orbifold compactification [178,179]. For example,
the origin of A

4

family symmetry can be understood by considering a d = 6 theory compactified on a
torus with the orbifolding T 2/Z

2

as shown in Fig.19 which formed the basis of a model of leptons [180].
The approach was subsequently extended to a SUSY GUT based on SU(5) in d = 6, where an A

4

family
symmetry was shown to emerge from orbifolding T 2/(Z

2

⇥ Z
2

) [181]. This approach was extended to
d = 8 [182], taking it one step closer to full HE string theory with d = 10.

Twenty years ago it was realised that strings also imply branes [183], which are solitonic sub-
dimensional objects in D spatial dimensions to which strings may attach themselves, and indeed must
do so for consistency in certain string theories. Indeed it is possible that the SM gauge group is restricted
to one or more of these branes. Including such D-branes, there are other types of string theory denoted
as type I, IIA, and IIB which are related by a complicated web of dualities, as depicted in Fig.20,
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String theory
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Figure 21: The F-theory construction based on d = 10 type IIB string theory, but compactified on Calabi-Yao complex
fourfold manifolds, equivalent to an elliptic fibration over the compact d = 6 (3 complex extra dimensions) base manifold
B

3

. Pinch points in the two-tori correspond to singularities in the base manifold where branes which wrap d = 4 (2
complex extra dimensions) can intersect, with gauge fields of SU(5) living on branes and matter fields along the compact
d = 2 (1 complex extra dimension) intersection curves between branes. Yukawa couplings (which do not experience any
extra dimensions) correspond to intersection of the matter curves.

SU(5)GUT , and results in extra vector-like states at roughly the TeV scale. The spectrum of extra
vector-like states have the quantum numbers of a complete extra 16X � 16X superfield representations
of SO(10)GUT , although the GUT group is broken of course, and also the extra matter arises from
di↵erent high energy 16 and 16 states [190].

The importance of SO(10)GUT for this review is of course that neutrino masses then become in-
evitable when it is broken to the SM gauge group. However, neutrino masses can only arise once the
U(1)X gauge group is broken, and this can only occur at the field theory level, since Wilson lines can-
not reduce rank as mentioned above. The breaking of U(1)X can be acheived through the VEVs of
the RH sneutrino components of the 16X � 16X, and neutrino masses then can arise via the operator
(16X 16X 16 16). However the origin of neutrino mass is more complicated than this, since R-parity
breaking is a generic consequence of the M theory approach, and the neutrino mass matrix for a single
physical neutrino mass turns out to be an eleven by eleven matrix! We only remark here that a phe-
nomenologically acceptable neutrino mass can emerge from this framework with both the type I seesaw
mechanism and R-parity violation contributing to neutrino mass [190].

7 Conclusion

This concludes our review of Unified Models of Neutrinos, Flavour and CP violation. We have come a
long way, starting from neutrino experiments and ending up with string theory. In the Introduction,
we recalled the breathtaking advances in neutrino physics from 1998 onwards, then we summarised
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Heterotic string in 10-d with 6-d orbifolds: D4, Delta 54

Kobayashi, Nilles, Ploger, Raby , Ratz                           
https://arxiv.org/pdf/hep-ph/0611020.pdf      

F-theory models may also have non-Abelian discrete 
family symmetry, specifically S4 and its subgroups

Antoniadis, Leontaris https://arxiv.org/pdf/1308.1581.pdf
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Figure 2.4: The Orbifold 2/
2

. The fundamental domain is outlined in
bold and forms a tetrahedron. Regions labelled by A,B,C and D are identified.
The fixed points are labelled zi and are symmetrically permuted under the
symmetry group A
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.

by identifying the points:

z ! z + 2, (2.6.1)

z ! z + � � = ei
�
3 . (2.6.2)

We have set the length 2⇡R
1,2 to unity for clarity. The orbifolding is defined by the

parity
2

identifying:

z ! �z, (2.6.3)
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leaving the orbifold to be represented by the bold triangular region shown in figure 2.4.

The orbifold has 4 fixed points which are unchanged under the symmetries of the

orbifold, equations (2.6.3),(2.6.1),(2.6.2). The orbifold can be described as a regular

tetrahedron with the fixed points as the vertices. The 6d spacetime symmetry is

broken by the orbifolding, previously the symmetry consisted of 6d translations and

proper Lorentz transformations⇤. We are now left with a 4d space-time symmetry

and a discrete symmetry of rotations and translations due to the special geometry of

�if we had allowed improper Lorentz transformations,i.e. reflections, then rather than A
4

we
would have S

4

the group of permutations of 4 objects
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Figure 19: In a 6-d theory the extra dimensions complexified as z = x
5

+ ix
6

may be compactified into a torus T 2. The
orbifold T 2/Z

2

is based on the twisted torus with a twist angle of 60�, with fixed points zi. The Z
2

orbifolding then folds
the rhombus into a tetrahedron (the fundamental domain in bold) giving rise to A

4

symmetry, with the regions A,B,C,D
identified respectively.

Figure 1: The web of dualities

through an intricate web of dualities (Figure 1). In this sense, there is evidence that despite the apparent multitude
of di↵erent theories, these are in fact di↵erent faces of a single unified theory.

In light of the success that led to the discovery of M-Theory, Vafa [2] applied a similar non-perturbative limit
to type II-B theory, in which he found that the theory could e↵ectively be described as a 12-dimensional theory,
despite the fact there are no sensible 12-dimensional supergravity theories. This limit was called F-Theory, and while
very recent it is being heavily studied and developed. More interestingly, F-Theory it has been proven to be a rich
framework for model build of SUSY GUTs.

SO(10) SUSY GUTS from M Theory on G2 Manifolds

While the full formulation of M-Theory is still unknown and home to a lot of speculation, its low energy limit as a
11-dimensional supergravity can be used to probe physics in an M-Theoretical context. When we refer to M-Theory
as a framework to do phenomenology we are then referring to the 11-dimensional supergravity theory as the starting
point and not the unknown full membrane theory,

The viability of M-Theory as a starting point for phenomenology started as it was shown – by Bobby Acharya and
collaborators [3] – when the extra seven dimensions are compactified on singular G

2

holonomy manifolds, M-Theory
would be endowed with gauge interactions and chiral superfields in gauge irreps. This happens as the compactified
space admits a 3-fold with an orbifold singularity supporting the gauge fields, while localised conical singularities on
this 3-fold support chiral superfields in irreps of the associated gauge interaction. The conical singularities are of
ADE-type, and this construction is engineered in analogy with Heterotic compactification setups.

A crucial point of the framework is that if the compactification is fluxless the moduli fields cannot have a perturba-
tive superpotential due to an exact Peccei-Quinn symmetry. This symmetry enforces the axions – which are the real
moduli complex partners in the chiral superfield – to have a shift-symmetry that in conjugation with holomorphicity
prevents non-perturbative contributions to the superpotential [4]. As a consequence, moduli only couple to matter chi-
ral superfields through Kahler interactions and have an exponentially suppressed superpotential contribution through
non-perturbative membrane instantons actions. As the superpotential is the order parameter of SUSY breaking, this
then means there will be a natural suppression between non-SUSY mechanics and the Planck scale [5].

Early semi-realistic constructions involved an SU(5) gauge group, for each the derived model was named G
2

MSSM
as it also had the same particle content as of the MSSM. The model relied in an idea by Witten [6], where the
combination of geometric discrete symmetries and the topological nature of the compactified space, provide a natural
discrete symmetry that does not commute with the gauge group. This in turn allows one to allow for a GUT scale
mass to the triplet coloured partners of the MSSM Higgses, and therefore solve the doublet-triplet problem of SU(5)
SUSY GUTs.

The original model/approach, su↵ered some shortcomings, for example neutrinos only have Majorana mass term,
and R-parity violation constraints are not naturally/generically met. Furthermore, there is a natural expectation that
the resulting 4-dimensional theory could be realised with a larger GUT group as such constructions are normal in
order corners of string/M-Theory.

One has then the motivation to search for larger gauge group realisations of M-Theory compactified onG
2

manifolds.
With this in mind we (me, Steve, and our collaborators in King’s College London Acharya, Bozek, Pongkitivanichkul)
started out by looking for E

6

realisations in an attempt to make a connection to some results from E
6

MSSM [7].

Early work on E
6

There are some crucial quantities in this framework called Wilson lines. Since the compactified space needs not to be
simply connected (meaning that the fundamental group ⇡

1

is not trivial, hence allowing the space to have holes and

2

Figure 20: The duality web of string theories against the background of a Calabi-Yao manifold.

Originally it was hoped that there would be a unique superstring theory based on heterotic string
theory with E

8

⇥ E
8

(HE) or SO(32) (HO) in d = 10 dimensions, where the six extra dimensions are
typically compactified on an orbifold (for a review see e.g. [177]). It is possible to understand the origin
of discrete family symmetry within the framework of HE theories with orbifold compactification. Indeed
there has been some interesting work on heterotic string theory in which flavoured GUTs, i.e. GUTs
together with discrete family symmetry, can arise from orbifold compactification [178,179]. For example,
the origin of A

4

family symmetry can be understood by considering a d = 6 theory compactified on a
torus with the orbifolding T 2/Z

2

as shown in Fig.19 which formed the basis of a model of leptons [180].
The approach was subsequently extended to a SUSY GUT based on SU(5) in d = 6, where an A

4

family
symmetry was shown to emerge from orbifolding T 2/(Z

2

⇥ Z
2

) [181]. This approach was extended to
d = 8 [182], taking it one step closer to full HE string theory with d = 10.

Twenty years ago it was realised that strings also imply branes [183], which are solitonic sub-
dimensional objects in D spatial dimensions to which strings may attach themselves, and indeed must
do so for consistency in certain string theories. Indeed it is possible that the SM gauge group is restricted
to one or more of these branes. Including such D-branes, there are other types of string theory denoted
as type I, IIA, and IIB which are related by a complicated web of dualities, as depicted in Fig.20,
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6-d SO(10)xS4   Adulpravitchai, Schmidt

https://arxiv.org/pdf/1001.3172.pdf

6-d and 8-d SU(5)xA4  Burrows et al                                      
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Discrete flavour symmetries in D-brane models
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10-d SYM with magnetised fluxes
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