Status of Theory Calculations for Seesaw Collider Searches ¹

Neutrinos@CERN

Richard Ruiz

Institute for Particle Physics Phenomenology, University of Durham

¹Lots of work with FR/MG/MA/QCD folks & small army of good IPPP students one

R. Ruiz - IPPP Nus@CERN 1 / 12

Where we are today

The LHC is operating spectacularly! \sim 40 fb⁻¹ (\sim 4x Tevatron) at 13 TeV

- Higgs ³: No longer a hep-th problem. Now also a hep-ex problem.
- ν masses , mass hierarchy, particle nature of dark matter, origin of EWSB, etc., require more data and thought

R. Ruiz - IPPP

Where we are today

The LHC is operating spectacularly! \sim 40 fb⁻¹ (\sim 4x Tevatron) at 13 TeV

- Higgs ³: No longer a hep-th problem. Now also a hep-ex problem.
- ν masses , mass hierarchy, particle nature of dark matter, origin of EWSB, etc., require more data and thought

After Run I and early Run II (Moriond), data is clear:

Interaction Strength \setminus Mass Scale	$\Lambda_{ m BSM} \lesssim \langle \Phi_{ m EW} angle$	$\Lambda_{ m BSM} \gg \langle \Phi_{ m EW} angle$
$g_{ m BSM}\gtrsim g_{ m SM}$	×	Need more data!
$g_{ m BSM} \ll g_{ m SM}$	Need more data!	Cannot probe :(

Where we are today

The LHC is operating spectacularly! \sim 40 fb⁻¹ (\sim 4x Tevatron) at 13 TeV

- Higgs ³: No longer a hep-th problem. Now also a hep-ex problem.
- ν masses , mass hierarchy, particle nature of dark matter, origin of EWSB, etc., require more data and thought

After Run I and early Run II (Moriond), data is clear:

Interaction Strength \setminus Mass Scale	$\Lambda_{ m BSM} \lesssim \langle \Phi_{ m EW} angle$	$ ho \Lambda_{ m BSM} \gg \langle \Phi_{ m EW} angle$
$g_{ m BSM}\gtrsim g_{ m SM}$	×	Need more data!
$g_{ ext{BSM}} \ll g_{ ext{SM}}$	Need more data!	Cannot probe :(

Picture first suggested by LEP + Belle I + Tevatron is telling:

• No "low hanging fruit"

hep-ph from 90s-00s designed for "day 1" discoveries, not for extreme regions of BSM parameter space (and hence collider phase space)

R. Ruiz - IPPP Nus@CERN 2 / 12

"Day 1" pheno = simple channels with moderately good signal/bkg, e.g., Drell-Yan process like $q\overline{q'} \to W_R \to Ne^\pm \to e^\pm e^\pm + q\overline{q'}$.

- New studies² are revealing holes in sensitivities
- Limitations were known, but necessary tools/formalisms are new

R. Ruiz - IPPP Nus@CERN 3 / 12

²Seesaw Examples: Maiezza, et al [1503.06834]; Mitra, RR, Scott, Spannowsky [1607.03504]; RR [1703.04669]

"Day 1" pheno = simple channels with moderately good signal/bkg, e.g., Drell-Yan process like $q\overline{q'} \to W_R \to N e^\pm \to e^\pm e^\pm + q\overline{q'}$.

- New studies² are revealing holes in sensitivities
- Limitations were known, but necessary tools/formalisms are new

LRSM: For $(m_N/M_{W_R}) \sim (y_N^{\Delta}/g_R) \lesssim 0.1$, $pp \rightarrow e^{\pm}e^{\pm} + nj$ searches breaks down due to electron ID failure [1607.030504]

R. Ruiz - IPPP Nus@CERN 3 / 12

²Seesaw Examples: Maiezza, et al [1503.06834]; Mitra, RR, Scott, Spannowsky [1607.03504]; RR [1703.04669]

"Day 1" pheno = simple channels with moderately good signal/bkg, e.g., Drell-Yan process like $q\overline{q'} \to W_R \to Ne^\pm \to e^\pm e^\pm + q\overline{q'}$.

- New studies² are revealing holes in sensitivities
- Limitations were known, but necessary tools/formalisms are new

LRSM: For $(m_N/M_{W_R}) \sim (y_N^{\Delta}/g_R) \lesssim 0.1$, $pp \rightarrow e^{\pm}e^{\pm} + nj$ searches breaks down due to electron ID failure [1607.030504]

"Exotic" regions of parameter space imply/require "exotic" topologies, e.g., vector boson fusion, gluon fusion, Lorentz-boosted resonances

- Hard to calculate by hand
- For first time, exotic channels can be computed quickly and reliably

 ²Seesaw Examples: Maiezza, et al [1503.06834]; Mitra, RR, Scott, Spannowsky

 [1607.03504]; RR [1703.04669]

R. Ruiz - IPPP Nus@CERN 3 / 12

The Monte Carlo Analysis Chain for Collider Experiments

Lots of tools on the market [hepforge.org/projects].

Robust & general purpose: Herwig, MadGraph aMC@NLO, Sherpa

R. Ruiz - IPPP Nus@CERN 4 / 12

State of FeynRules NLO Model Library

In '14/'15, approached by hep-ex to search for $W\gamma o N\ell^\pm$

- Discovered then that MC tools did not exist to redo the calculation
- Except: $pp o W_{L/R}^* o N\ell^{\pm}$ in ALPGEN/PYTHIA & Type III in FR

State of FeynRules NLO Model Library

In '14/'15, approached by hep-ex to search for $W\gamma o N\ell^\pm$

- Discovered then that MC tools did not exist to redo the calculation
- Except: $pp o W_{L/R}^* o N\ell^\pm$ in ALPGEN/PYTHIA & Type III in FR

European+Midwest effort! [feynrules.irmp.ucl.ac.be/wiki/NLOModels]

Description	Contact	Reference	FeynRules model files	UFO libraries	Validation material
Dark matter simplified models (more details)	K. Mawatari	□ arXiv:1508.00564 , □ arXiv: 1508.05327 , □ arXiv: 1509.05785		DMsimp_UFO.2.zip	
Effective LR symmetric model (more details)	R. Ruiz	G+arXiv:1610.08985	effLRSM.fr	Efflesm upo As of 2	7 March,
GM (more details)	A. Peterson	⇔arXiv:1512.01243	-	GM_NLO UFO	أعدادها والمساوية
Heavy Neutrino (more details)	R. Ruiz	⇔arXiv:1602.06957	heavyN.fr	HeavyN NLO UFO UPGATE	d regularly
Higgs characterisation (more details)	K. Mawatari	□ arXiv:1311.1829 , □ arXiv:1407.5089 , □ arXiv: 1504.00611	-	HC_NLO_X0_UFO.zip	•
Inclusive sgluon pair production	B. Fuks	G+arXiv:1412.5589	sgluons.fr	sgluons_ufo.tgz	sgluons_validation.pdf; sgluons_validation_root.tgz
Spin-2 (more details)	C. Degrande	⇔ http://arxiv.org/abs/1605.09359	dm_s_spin2.fr	SMspin2 NLO UFO	-
Stop pair -> t tbar + missing energy	B. Fuks	0>arXiv:1412.5589	stop_ttmet.fr	stop_ttmet_ufo.tgz	stop_ttmet_validation.pdf; stop_ttmet_validation_root.tgz
SUSY-QCD	B. Fuks	⇔arXiv:1510.00391		susyqcd_ufo.tgz	All figures available from the arxiv
Two-Higgs-Doublet Model (more details)	C. Degrande	G+arXiv:1406.3030	-	2HDM_NLO	-
Top FCNC Model (more details)	C. Zhang	G> arXiv: 1412.5594	TopEFTFCNC.fr	TopFCNC UFO	-
Vector like quarks	B. Fuks	@arXiv:1610.04622	VLQ_v3.fr	UFO in the SFNS, UFO in the 4FNS, event generation scripts	All figures available from the arxiv
W'/Z' model (more details)	R. Ruiz, B. Fuks	⊕ arXiv:1701.05263	vPrimeNLO.fr	vPrimeNLO UFO	-

Modern general purpose MC packages are very sophisticated

"With great power there must also come - great responsibility." - B. Parker ('62)

R. Ruiz - IPPP Nus@CERN 5 / 12

- N is light and "long"-lived
- $pp o W_R o Ne$ looks like SSM W'

R. Ruiz - IPPP

Nus@CERN

- N is light and "long"-lived
- $pp o W_R o Ne$ looks like SSM W'

For low-mass W', Z', $\sigma^{\rm NLO}/\sigma^{\rm LO}\gg 1.2-1.3$

- (ロ)(ap)(ap)(ap)(ap) を (のQ(

R. Ruiz - IPPP

Nus@CERN

6 / 12

- N is light and "long"-lived
- $pp o W_R o Ne$ looks like SSM W'

For low-mass $W', Z', \sigma^{\text{NLO}}/\sigma^{\text{LO}} \gg 1.2 - 1.3$

New BSM Pheno: $NLO+PS/LL(k_T) = lowest \ order$ at which first QCD radiation is *qualitatively* correct / physically meaningful [CSS ('85)]

R. Ruiz - IPPP Nus@CERN 6 / 12

- N is light and "long"-lived
- $pp o W_R o Ne$ looks like SSM W'

For low-mass W', Z', $\sigma^{
m NLO}/\sigma^{
m LO}\gg 1.2-1.3$

New BSM Pheno: $NLO+PS/LL(k_T) = lowest \ order$ at which first QCD radiation is *qualitatively* correct / physically meaningful [CSS ('85)]

- Selection cuts on jet observables now possible

R. Ruiz - IPPP Nus@CERN 6 / 12

Outlook: Automated Monte Carlo at NNLO (1 slide)

MC@NNLO for BSM

Is MC@NNLO important for BSM?

No. Except when MC@NNLO really means MC@NLO

8 / 12

³Dicus, Roy ('91); Hessler, et al [1408.0983]; Degrande, et, al [1602.06957]

MC@NNLO for BSM

Is MC@NNLO important for BSM?

No. Except when MC@NNLO really means MC@NLO

For loop-induced processes, MC@NLO \implies 1-loop @ LO

- $gg \rightarrow H^0$, A^0 : QCD corrections are large

- Heavy N at 100 TeV: GF@LO > DY@NLO Q Q Q

³Dicus, Roy ('91); Hessler, et al [1408.0983]; Degrande, et, al [1602.06957] R. Ruiz - IPPP Nus@CERN 8 / 12

Part II: Myth of Unimportant QCD Corrections⁴

Common Statement: "QCD is unimportant for colorless BSM"

Common Statement: "QCD is unimportant for colorless BSM"

More correct statement: "Away from phase space boundaries, totally inclusive fixed order QCD corrections are $\sim +20-40\%$ for colorless BSM processes initiated by quarks for non-hierarchical scale choices"

These are the assumptions for the Collinear Factorization Thm [CSS ('80s)]

$$\sigma(pp \to A + X) = \sum_{i,j} \int d\xi_1 \int d\xi_2 [f_i(\xi_1)f_j(\xi_2) + (1 \leftrightarrow 2)]\hat{\sigma}(ij \to A)$$

R. Ruiz - IPPP Nus@CERN 10 / 12

Common Statement: "QCD is unimportant for colorless BSM"

More correct statement: "Away from phase space boundaries, totally inclusive fixed order QCD corrections are $\sim +20-40\%$ for colorless BSM processes initiated by quarks for non-hierarchical scale choices"

These are the assumptions for the Collinear Factorization Thm [CSS ('80s)]

$$\sigma(pp \to A + X) = \sum_{i,j} \int d\xi_1 \int d\xi_2 \left[f_i(\xi_1) f_j(\xi_2) + (1 \leftrightarrow 2) \right] \hat{\sigma}(ij \to A)$$

Relaxing these assumptions has consequences:

- For $M_{W'/Z'} \ll \sqrt{s}$, $\sigma^{NLO}/\sigma^{LO} \gg 1.2 1.3$
- For W'/Z' at any M, NLO+PS needed for jet-based cuts
- ullet In $gg
 ightarrow H^0/A^0$ for any $m_{H/A}$, $\sigma^{N^3LX}/\sigma^{LO} \sim 2-3$
- How about $M_{W'/Z'} \sim \sqrt{s}$ or $gg \to h^*/Z^* \to N\nu$?

10 / 12

R. Ruiz - IPPP Nus@CERN

Impact of Threshold Resummation⁶

Threshold resummation is important when

- ullet $\left(M_{
 m BSM}/\sqrt{s}
 ight)\gtrsim 0.3$ for $q\overline{q}^5\colon K_{DY}^{NLO+N^2LL}\sim 2-2.5$
- gg always: $K_{GF}^{N^3LL} \sim 2-3$ (

New: Neutral current production of N largest rate at LHC! ⁵Appell, Sterman, Mackenzie ('88)

⁶Mitra, RR, Scott, Spannowsky [1607.03504]; RR, Spannowsky, Waite [Soon]

R. Ruiz - IPPP Nus@CERN 11 / 12

Summary

Over the past few years, strong push to modernize Seesaw analyses

- New topologies, new tools, new understanding of colliders themselves
 - "With great power there must also come great responsibility"
- QCD is a useful and powerful tool for Seesaws@Colliders
 - "With great power there must also come great responsibility"
- Not possible without strong European effort
- To hep-ex/ph folks, tell us your needs!

Remember: "The LHC is planned to run over the next 20 years, with several stops scheduled for upgrades and maintenance work." [press.cern]

- ullet Pheno studies from '90s-'00s assumed 14 TeV and 100-300 fb $^{-1}$
- ullet High-Luminosity LHC and Belle II goals: 1-3 ab⁻¹ and 50 ab⁻¹
- Premature to claim "nightmare scenario" (SM Higgs + nothing else)

R. Ruiz - IPPP Nus@CERN 12 / 12