Computing at CERN

Hannah Short, Computer Security
Hello!

My name’s Hannah
CERN Fellow in Computer Security,
Brit/Irish, Scientific Computing
Enthusiast!

hannah.short@cern.ch
@hannah.short08
What will I talk about?

A brief history of Computing at CERN

The IT department (a small selection!)

- WLCG
- Innovation
- Collaborative tools

Born and bred at CERN
Computing at CERN
A brief history
computing, n.
Pronunciation:
 Brit. /kəmˈpjuːtɪŋ/ , U.S. /kəmˈpjuːdɪŋ/

1. The action or an instance of calculating or counting; = computation n. 1a.

2. The action or practice of using computers, esp. as a professional or expert; the activity or operation of an electronic computer; (also) = computer science n.

Credit to Tim Smith
An Early “Computer”

→ Wim Klein

→ Calculating the 73rd root of a 500 digit number took less than 3 minutes…

→ Not the first CERN Computer!
 Two female computers were already working with mechanical calculators

https://home.cern/cern-people/updates/2012/12/remembering-wim-klein
1958, The Ferranti Mercury arrived
Introduction

As computing becomes a more and more widespread and complex activity in the laboratory, the need will increase for a means to have a wider general circulation of background information about different aspects of computing activities than is possible with the present system of Computer Notices. I therefore make no apology for introducing yet another circular which will find its way on to CERN desks. Rather I would express the hope that this newsletter will prove to be a useful source of general information on computer use and performance, programming developments and the requirements of different kinds of computer users, as well as on future plans for computers, programming and computer uses in the laboratory. The newsletter will be
1972, Super Computer Installed
Tapes being sent up from B513 basement
2016, Today's Data Centre
The IT Department
We are responsible for Computer Security across CERN… pretty good idea of what is going on!
Who are we?

- ~400 people in IT
- + Many computing experts in other departments

The role of the IT Department is to keep providing an excellent level of services while scaling up to the foreseen resource levels at an affordable cost.
We’re building huge physics experiments but we can’t store all the data coming from them! What can we do??
WLCG: The Worldwide LHC Computing Grid
Data Volumes

Mega
10^6
A high resolution photo
This presentation = 85MB

Giga
10^9
My Mac = 250GB

Tera
10^{12}
Good external hard drive

Peta
10^{15}
LHC Data Volumes!
Where does the data come from?

→ Large Hadron Collider
→ (Mostly) 4 Experiments, ATLAS, ALICE, LHCb and CMS
1PB/Second!
2016 LHC Data

June-Aug 2016 >500 TB / day
(Run 1 peak for HI was 220 TB)

~160 PB on tape at CERN
500 M files

LHC data – Continue to break records:
10.7 PB recorded in July 2016
Breaking News!

Melissa Gaillard shared CERN Updates's post to the group: IT-Dep.
17 hrs · 1

CERN Updates shared a link to the group: CERN Updates.
17 hrs · 1

CERN Data Centre passes the 200-petabyte milestone | CERN
Where do these data come from? Particles collide in the Large Hadron Collider (LHC) detectors approximately 1 billion times per second, generating about...
How much data are we talking? (2012)

→ 2012, 15 PB
→ 2017 estimates 50 PB, equivalent to a 12km high stack of DVDs
→ CERN can only provide 20%-30% storage and CPU

https://www.wired.com/2013/04/bigdata/
Distributed Computing

→ Collection of independent computers
→ Appear as a single system
→ Benefits
 ✓ Continuous availability
 ✓ Scalability
What is a grid?

→ “A grid gives selected user communities uniform access to distributed resources with independent administrations”
→ Like a power grid, you don’t need to know where the power comes from!
→ Don’t need to know where your computing is done
→ Don’t need to know where your data is stored

Isn’t this like a cloud?

Cloud
➔ On Demand
➔ Dynamically provisioned & metered by e.g. Amazon, Microsoft Azure

Grid
➔ Fixed size
➔ Collaborative, run by community
Where is the data stored?

- **Tier 0**: CERN & Budapest
- **Tier 1**: 13 large centres
 - 24/7 Support
- **Tier 2**: ~160 smaller universities and institutes
- **Tier 3**: Individuals, accessing the grid
CERN Meyrin Data Centre

http://goo.gl/maps/K5SoG

Credit to Lorena Lobato
Wigner Data Centre, Budapest

Credit to Lorena Lobato
3 100GB/s Connections

Credit to Lorena Lobato
What has WLCG achieved?

→ Unprecedented **speed and volume** of data processing

→ Analysis of **billions of collisions within weeks** to find the Higgs signal (Nobel Prize 2013)

→ Successful **collaboration** of diverse countries, organisations and people! 42 countries and 2 million jobs per day
Innovation
Collaborative tools

Physics is constantly pushing the boundaries of computing... how can we meet those needs?
We need to be at the edge of commercial and academic developments!
Openlab = Commercial Innovation
EC Project = Research & Education
Community Innovation
Openlab

“CERN openlab is a unique public-private partnership that accelerates the development of cutting-edge solutions for the worldwide LHC community and wider scientific research.”

- Testing software and hardware
- Large student internship programme
Openlab R&D and Innovation

- 200+ press cuttings
- 150,000 visits to our website
- 50+ events, visits, lectures
- 100+ presentations
- 50+ news articles, press releases, case studies

Seminars, training courses, academic training

CERN openlab Summer Students Programme

• Joint R&D
• Education
• Management
• Communication
• Innovation and Knowledge Transfer

Applications to cross-disciplinary research

BioDynaMo
The Biology Dynamic Modeller

GeneROOT

Innovation & Entrepreneurship
European Commission projects

On-going

Future

Bridging the gap between schools and universities through informal education

https://up2university.eu
Challenges in EC Projects

Some of the many themes address:
- On-Premise Vs. Public Clouds
- Supporting the Long Tail of Science (LTOS)
- Trust and collaboration
The HNSci Cloud public-private partnership
Open Science: Zenodo

Infrastructure
Runs on 30 VMs in CERN Cloud

Impact
Biggest issuer of DOIs for SW in world
Reference material for publications
Recommended by EC and National programmes

Supports LTOS & large groups

Visitors from ~ all Countries
Including
Antarctica
Vatican City
56% from Europe

57k Records
11k Software
3k Datasets

700 Communities
Projects
Institutes
Subjects
Conferences
Publishers
What’s next?

Growing interest in the community for new models and tools. For example:

→ Applications of Machine Learning; impact on computing resources?
→ Applications of IoT-like infrastructures; impact on network and security?
Collaborative Tools
Collaborative tools

There are ~15,000 people working at CERN… how can we all work together effectively and efficiently?
The IT Department

Department Infrastructure

WLCG openlab Security EC Projects

Collaboration, Devices & Applications

Storage Databases

Compute & Monitoring

Communication Systems Computing Facilities
Videoconference

→ 250 meeting rooms of all sizes on site
100 equipped for video conference
Legacy + VidyoPanorama
16 equipped for VC + Webcast

→ 500 legacy endpoints worldwide
Non centrally managed

Credit to Tim Smith
CERN Vidyo Worldwide Service Topology

- 8184 meetings/month
- 941 simultaneous connections
- 252 in one meeting
- 50M minutes last year / 40k downloads

Credit to Tim Smith
Recruitment

→ Asynchronous video screening
→ Cost savings in bringing people to interview
→ Multi-lingual – recruit from over 20 countries

Credit to Tim Smith
Most Effective International Organisations on Twitter

AVERAGE NUMBER OF RETWEETS PER TWEET

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Average Retweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>@CERN European Organisation for Nuclear Research</td>
<td>130</td>
</tr>
<tr>
<td>@unicef United Nations Children’s Fund</td>
<td>100</td>
</tr>
<tr>
<td>@un United Nations Organisation</td>
<td>82</td>
</tr>
<tr>
<td>@WWF World Wide Fund for Nature</td>
<td>69</td>
</tr>
<tr>
<td>@greenpeace Greenpeace</td>
<td>68</td>
</tr>
</tbody>
</table>

Credit to Tim Smith
Volunteer Computing

Scavenged resources
→ Volunteers (e.g. home PCs)
→ Institute desktops
→ Even mobile phones!

Unpredictable but significant resources
→ Target CPU bound simulations (not data intensive)
→ Over 50% of LHC compute is simulation!

Outreach benefits, LHC@Home

http://lhcathome.web.cern.ch
Volunteer Computing

- 2nd largest simulation site
- Running 4-5k parallel jobs
- 20M events simulated
- 5M CPU hours
Born and bred at CERN
Technical Advances
CERN’s influence in computing

➜ Several inventions directly from CERN
➜ Several evolved at CERN
➜ Direction of scientific computing strongly influenced and continues to be so!
CERN was one of the early European adopters of the internet
1991 80% of internet capacity in Europe!
CERN contributed to standardization

http://home.cern/cern-people/opinion/2013/06/how-internet-came-cern
The Internet

- HEP centres set up links to enable data sharing
- Data exchange across the iron curtain
- 1988 first data connection between China and scientific world – IHEP to CERN

Credit to Tim Smith
Touch Screens

→ Whilst not strictly an invention of the IT Department…
→ Super Proton Synchrotron control system required complex controls
→ Developed capacitive touch screen
→ Based on open standards and moved into industry

http://cerncourier.com/cws/article/cern/42092
Tim Berners Lee found a solution to the information sharing backlog.
In 1993, software was made public and quickly changed our lives!

http://home.cern/topics/birth-web
“Vague but exciting”
Not hierarchical, or centrally controlled
Experts store locally, update independently
Community is distributed: remote access
Thanks!

Any questions?

You can find me at:
@hannah.short08
hannah.short@cern.ch
CREDITS

➔ Lorena Lobato, Tim Smith and Melissa Gaillard for their content and ideas
➔ Presentation template by SlidesCarnival
➔ Photographs by Death to the Stock Photo (license)