Введение в детектирование части

Татьяна Берже-Гринева (LAPP Annecy, Франция)

Единицы измерения

Quantity	HEP units	SI Units
length	1 fm	10 ⁻¹⁵ m
energy	1 GeV	1.602 · 10 ⁻¹⁰ J
mass	1 GeV/c ²	1.78 ⋅ 10 ⁻²⁷ kg
ħ=h/2	6.588 · 10 ⁻²⁵ GeV s	1.055 ⋅ 10 ⁻³⁴ Js
С	2.988 · 10 ²³ fm/s	2.988 · 10 ⁸ m/s
ħc	0.1973 GeV fm	3.162 ⋅ 10 ⁻²⁶ Jm

Natural units ($\hbar = c = 1$)		
mass	1 GeV	
length	1 GeV ⁻¹ = 0.1973 fm	
time	1 GeV ⁻¹ = 6.59 · 10 ⁻²⁵ s	

Частицы

Стабильные частицы: е (электрон), ү (фотон), нейтрино, p(uud) протон

Долгоживущие частицы: μ (мюон), π⁺(uđ) пион, K⁺(uš) каон, n(udd) нейтрон...

1968: SLAC	1974: Brookhaven & SLAC	1995: Fermilab	1979: DESY
U	С	t	g
up quark	charm quark	top quark	gluon
1968: SLAC	1947: Manchester Univ	1977: Fermilab	1923: Washington Univ.
d	S	b	γ
down quark	strange quark	bottom quark	photon
1956: Savannah River Plant	1982: Brookhaven	2000: Fermilab	1983: CERN
v_{e}	V_{μ}	$oldsymbol{\mathcal{V}}_{ au}$	
electron neutrino	muon neutrino	tau neutrino	W boson
1897: Cavendish Laboratory	1937: Caltech & Harvard	1976: SLAC	1983: CERN
electron	muon	tau	
			2012: CERN
			Higgs boson

А другие частицы? Пример события

Бозон Хигса

Много столкновений одновременно!

Этапы детектирования

физических процессов и условий эксперимента

Задача детектора

Для того чтобы понять, что произошло при столкновении надо

- Зарегистрировать все возможные частицы
- Измерить их импульс или энергию, заряд
- Их идентифицировать

Разные частицы взаимодействуют с веществом по разному

магнитным полем

Заряд частицы определяется по направлению отклонения в магнитном поле (В), а импульс по радиусу кривизны. Чем сильнее магнитное поле В и больше размеры детектора, тем надежнее можно измерить ее импульс частицы.

Современные детекторы

ВЗАИМОДЕЙСТВИЕ ЧАСТИЦ С ВЕЩЕСТВОМ

Фотоны (ү)

Электроны и другие заряженые частицы

Потеря энергии при взаимодействии с атомарными электронами,

> атомы ионизируются

Многократное рассеяние при взаимодействии с ядрами. При этом может излучится фотон (тормозное излучение) При скорости частицы больше скорости света в среде возникает Черенковское излучение. При переходе из одной среды в другую в 1% случаев может быть излучен фотон (Переходное излучение).

Электроны (е) и электо-магнитные ливни

- При энергиях электрона >5-10ГэВ тормозное излучение доминирует.
- Радиационная длинна (Х_о) расстояние за которое электрон теряет 1/е энергии на тормозное излучение.
- Электроны излучают фотоны, те производят электронпозитронные пары и т.д. (электо-магнитные ливни)

Процесс размножения продолжается пока энергия достаточно велика E > E_{крит} Тысячи частиц при начальной энергии E_o больше чем 1 ГэВ

Мюоны (μ)

- Мюон тяжелый электрон
 - Тормозное излучение при энергиях > 500ГэВ
 - Минимально ионизирующая частица
 - Почти не взаимодействует

<mark>Адроны (р, К, π, n)</mark>

- Заряженые адроны взаимодействуют, как µ
- Но также участвуют в неупругих ядерных процессах с выделением ядерных осколков и других адронов (адронные ливни)
 - Физика довольно сложна
 - Внутри ливня появляются также фотоны и электроны, рождая электромагнитные ливни
 - Размножение пока энергия частиц в ливне достаточно большая > ГэВ

Адронные ливни длиннее и шире электро-магнитных

Струя

Адронная струя (jet) образуется несколькими <u>элементарными частицами</u>, летящими в одном направлении в узком конусе

В данном событии присутствуют 2 струи М_{іі} = 2.55 TeV

Если частицы не взаимодействуют с детектором?

- Самые слабо взаимодействующие частицы: нейтрино
- Они не оставят следа в «обычном» детекторе
- Специальные детекторы, как Super Kamiokande 50 000 тонн ультра чистой воды (д 39 м × в 42 м)
- Используем закон сохранения (поперечного) импульса:

 $\mathbf{p}_{\mathrm{T}}^{\mathrm{Hay}} = \mathbf{p}_{\mathrm{T}}^{\mathrm{KOH}} = \mathbf{O};$

Иногда $\mathbf{p}_{T}^{KOH} = \Sigma \mathbf{p}_{T}^{i} \neq 0$, но

 $\Sigma \mathbf{p}_{\mathrm{T}}^{i} + \mathbf{p}_{\mathrm{T}}^{v} = \mathbf{0}$

Недостающая энергия

 $E_T^{miss} = |\mathbf{p}_T^v| = E^v$

Это может быть нейтрино...
Или новая частица!

...но об этом в других лекциях...

ПРИНЦИПЫ ДЕТЕКТИРОВАНИЯ

Первые детекторы

- «Типичные» энергии очень малы по сравнению с макроскопическими размерами детекторов
- Надо использовать физические эффекты чувствительные к малым возмущениям
- Системы в состоянии неустойчивого равновесия
 - переохлажденный пар туманной камере Вильсона (Нобелевская Премия 1927)
 - Образование капелек конденсата («тумана») вдоль движения заряженной частицы
 - Перегретая жидкость в пузырьковой камере (Нобелевская Премия, Д. Глазер, 1960)
 - Заряженная частица ионизирует жидкость, жидкость вскипает вдоль ее движения, образуя ряд мельчайших пузырьков, которые можно сфотографировать

Пузырьковые камеры

Пузырьковая камера Гаргамель. ЦЕРН 1970-1978 гг 22×44 метраметра 12 м³ фреона Открытие нейтральных токов в 1973.

BNL 80 inch пузырьковая камера: Открытие Ω⁻ в 1964.

К современным детекторам

- Интерес к более редким процессам
 - Необходимость увеличения скорости записи событий
- Визуальное сканирование фотографий и эмульсий заменяется электронным считыванием и обработкой данных
- Прогресс в развитии электроники позволяет усилить слабые сигналы и уменьшить шумы

1968 Многопроволочная пропорциональная камера (Нобелевская Премия1992, Георгий Харпак)

Измерение траектории частиц

Частица ионизирует газ, электроны дрейфуют к тонкой проволочке под напряжением

- Электронная лавина
- Малое усиление: сигнал пропорционален ионизации
- Слишком большое усиление: счетчик Гейгера
- Измеряя время прихода сигнала и зная положение проволоки можно узнать где проходила частица

Дрейфовая камера

cathode

Кремневые детекторы

Многослойный Si детектор из отдельных тонких пластинок с нанесенной прямо на них электроникой.

- Начальная ионизация больше, чем в газах, но нет усиления ⇒ Нужна чувствительная и малошумящая электроника.
- Узнав координаты точек пересечения частицы с несколькими идущими подряд пластинками пиксельного детектора, можно восстановить

трехмерные траектории частиц

Точности: 5-50 µм Геометрия:

- Полоски «стрипы»
- Прямоугольники «пиксели»

Много (десятков) миллионов каналов считывания

Идентификация заряженных частиц

dE/dx [MeV g⁻¹ cm²]

Ионизационные потери как функция импульса зависят от массы частицы Это позволяет идентифицировать частицы

Только при низких импульсах <0.7ГэВ

Измерение энергии частиц

Калориметрия = измерение энергии путем полного поглощения, Обычно объединяется с пространсвенной реконструкцией. Частицы исчезают.

Чувствителен к заряженным и незаряженным частицам!

Два типа калориметров

- Электро-магнитный (электроны и фотоны)
- Адронный (протоны, нейтроны и пионы)

Два способа измерений :

- Однородные калориметры (только электро-магнитные) детектор = абсорбер
- Неоднородные калориметры = чередующиеся Абсорбер + детектор (газовые, жидкостные, твердотельные)

Однородные калориметры

Материал чаще всего: сцинтилляционные кристаллы При пересечении кристалла частицами возникают сцинтилляционные фотоны, регистрируемые фотодиодом.

Длинна, сечение и материал подбираются для эксперимента Очень точное измерение энергии, но нет информации о начале ливня

Неоднородные калориметры

- Конструкция: чередующиеся слои абсорбера и детектора Абсорбер: Pb, W, Fe, Cu
- создает ливни частиц
- Детектор: пластиковый сцинтиллятор или инертная жидкость (Ar, Kr)
- детектирует ливни частиц
- сигнал: сцинтилляция или ионизация

Возможна сегментация по длинне: развитие ливня, «траектория» частицы Не такое точное определение энергии

Преимущества калориметров

- Чувствительность ко всем видам частиц (заряженых и нет)
- Энергетическое разрешение улучшается с Е

$$\frac{\sigma}{E} \approx \frac{1}{\sqrt{E}}$$
 калориметр $\frac{\sigma}{p} \approx p$ магнитный спектрометр

- Многопрофильные детекторы
 - Измерение энергии (основное применение)
 - Измерение направления частицы, начала ливня (сегментация)
 - Идентификация частиц (различный сигнал от электронов, адронов, гамма-квантов)
 - Измерение времени прихода частиц
 - Быстрая реакция → удобно для триггерной системы
- Достаточно выгодны по цене
 - Толщина для поглощения ливня ~ log E (в спектрометре ~ \sqrt{p})

Что мы можем узнать о частицах?

- Зарегистрировать все возможные частицы
 - Заряженые во внутреннем детекторе и калориметрах
 - Нейтральные в калориметре
- Измерить их импульс и заряд во внутреннем детекторе
- Измерить их энергию в калориметре
- Их идентифицировать

Все это надо сделать одновременно: многослойный детектор

ПРИМЕРЫ ДЕТЕКТОРОВ

Современные детекторы

Детектор CMS

Детектор ATLAS

45м

Асимметричные

Эффективное поперечное сечение

Эффективное поперечное **сечение** (σ) — это физическая величина, характеризующая вероятность перехода системы двух взаимодействующих частиц в определённое конечное состояние.

- HLT компьютерный центр с 13 тысячами процессоров
 - Обрабатывает ~100GB/sec чтобы получить не больше 1kHz на выходе
- Поток данных для сохранения: ~IGB/sec
- Каждое отобранное событие будет иметь минимум две копии на пленочных накопителях, что бы избежать потери данных
- Типичный годовой объем одной копии сырых необработанных данных: 5-10 PByte

В шести экспериментах производится 15-20 петабайт (15-20 млн. гигабайт) данных в год. Их нужно сохранить и проанализировать.

Данные только одного	ежегодно	Bec DVD
эксперимента		дисков
Первичные данные	~ 4 PB	14000 кг
Физические данные	0.2 PB	784 кг

Для всех экспериментов – около 4 млн. DVD дисков

или около 20 млн. CD дисков

Для обработки и анализа этих данных требуется около 100000 персональных компьютеров (конец прошлого – начало нынешнего столетий)

Воздушный шар (30 км)

Компакт-диски с данными LHC за один год! (~ 20 км)

Конкорд (15 км)

Монблан (4.8 км)

Компьютерный центр ЦЕРНа даже после существенной модернизации последних лет может обеспечить только ~40% ресурсов для хранения данных и около 30% требуемых вычислительных ресурсов.

Заключение

- В этой лекции мы коснулись основных принципов работы детекторов физики высоких энергий
- Большая часть времени при постройке уходит на практическое применение:
 - Как оптимально разместить сенсоры?
 - Как потянуть кабели, как их соединить

— ...

- Сейчас идет работа в следующих областях:
 - Upgrade детекторов LHC
 - Другие эксперименты

Cosmic Ray Air Shower Detection

From Katsushi Arisaka, Calor 2002

IceCube at the South Pole

Antares Neutrino Observatory

RB0305AMSdetector

СПАСИБО ЗА ВНИМАНИЕ!

ДОПОЛНИТЕЛЬНЫЕ ПРОЗРАЧКИ

Детекторы Черенковского излучения

При скорости частицы больше скорости света в среде (но меньше скорости света в вакууме) возникает Черенковское излучение.

- Конус черенковского света $\cos\theta_c = 1/(n\beta)$ п индекс рефракции $\beta = v/c$
- Зная раствор конуса измеряем скорость
- Зная импульс частицы, измеряем массу

Принципы выбора конструкции

Требования в Физике Высоких Энергий:

- Радиационная стойкость
- Сильное магнитное поле
- Герметичность и легкий доступ после открытия детектора, Модульность, Гранулярность
- Детектор должен отработать 10 лет или больше
- Небходимость выборать 100 интерестных событий из 1 107 за 1сек
- Хранение данных ~4 10³Tb в год (1M DVDs a year)

Надо помнить

Стоимость установки увеличивается пропорционально **~объему**

Как можно меньше **материала** перед **калориметрами** Как можно больше **материала** перед **мюонным спектрометром**

Магнитное поле

Магнит – самая видимая часть детектора

Внутренний детектор

Детектор Переходного Излучения (ТКТ): Соломинки-Газ 350 k каналов 36 точки измерения σ ~130 mm

Стрипы (SCT) Кремний 6.2 М каналов 4 точки измерения σ~16 mm

Пиксели (Pixel): Кремний 80 М каналов 3 точки измерения σ~10 mm

Калориметры ATLAS

Мюонная система

Мюоны проходят через весь детектор почти не теряя энергии Для них после калориметра есть специальная трековая система

	Измерение (точные)	Триггер (быстрые)
Центр	Monitored Drift Tubes (~1200)	Resistive Place Chambers (RPC) ~600
Концы	Cathode Strip Chambers (CSC)	Thin Gap Chambers (TGC) ~3600

 $ZZ^* \rightarrow 4\mu$

Run Number: 183081, Event Number: 10108572

Date: 2011-06-05 17:08:03 CEST

Сечение рассеяния на БАК

«Хорошо изученные процессы», нет необходимости регистрировать все события...

Физика LEP - большого электрон-позитронного коллайдера

«Новая Физика» Это мы хотим выделить и записать для дальнейшего анализа...

Международный линейный ускоритель

- Следующий большой проект: ILC
- Энергия: 2×250ГэВ (upgrade 2×500ГэВ)
- 1 interaction region
- 2 детектора (3-4 проекта)

Будующие эксперименты

Сегментация очень важна для разрешения струй!

Алгоритм потока частиц: калориметр работает как треккер.

particles in jet	fraction of energy in jet	detector	single particle resolution	jet energy resolution
charged particles	60 %	tracker	$rac{\sigma_{p_t}}{p_t}\sim 0.01\%\cdot p_t$	negligible
photons	30 %	ECAL	$\frac{\sigma_E}{E} \sim 15\%/\sqrt{E}$	$\sim 5\%/\sqrt{E_{jet}}$
neutral hadrons	10 %	HCAL+ECAL	$\frac{\sigma_E}{E}\sim 45\%/\sqrt{E}$	$\sim 15\%/\sqrt{E_{jet}}$

MiLl

<u>С Будующие эксперименты</u>

Адронный калориметр •Аналоговые сцинт тайлы –3х3см² –Кремневый ФЭУ

•Газовый цифровой –RPC, GEM, µMEGAS

Сцинтилляторы

Зонные уровни

- Вещества излучающие фотоны при облучении (непроводники)
- Органические (пласмассы) и неорганические (кристаллы)...

Зонные уровни с примесями

Входящая частица (Ч) выбивает электрон в зону проводимости.
Электрон рекомбинирует с дыркой или образует экситон
(электронно-дырочное состояние). Зона экситонов (ЗЭ) ниже ЗП.
При де-экситации экситона производится фотон (γ).
Примеси создают дополнительные уровни (ЗА) и облегчают процесс.

1 Ноября 2k+11

Ваня Беляев, "Детекторы (введение)

Преимущества калориметров

- Чувствительность ко всем видам частиц (заряженых и нет)
- Энергетическое разрешение улучшается с Е

$$\frac{\sigma}{E} \approx \frac{1}{\sqrt{E}}$$
 калориметр $\frac{\sigma}{p} \approx p$ магнитный спектрометр

- Многопрофильные детекторы
 - Измерение энергии (основное применение)
 - Измерение направления частицы, начала ливня (сегментация)
 - Идентификация частиц (различный сигнал от электронов, адронов, гамма-квантов)
 - Измерение времени прихода частиц
 - Быстрая реакция → удобно для триггерной системы
- Достаточно выгодны по цене
 - Толщина для поглощения ливня ~ log E (в спектрометре ~ \sqrt{p})

Однородные калориметры

Черенков (РbO) × Низкий световыход (1/10⁴ NaI) ✓ Великолепное разрешение (~кэВ) 🛪 Плохая радиационная стойкость (PbF, лучше) F<< 1 (фактор Фано) ×λ < 300-350nm $\overline{E}^{\propto} \overline{\sqrt{N_{\rm ob}}}$ $N_{eh} \approx 10^5$ $5\%/\sqrt{E}$ X Оптимальны для низких энергий X Очень дорогие Инертная жидкость (LKr) Сцинтилляторы ✓ Хорошая радиационная Очень популярны! стойкость ✓Высокий световыход ✓ Однородность детектора ✓ Высокая плотность X Необходимость охладительного и X Не однородность кристаллс очистительного оборудования X Цена ✓ Свойства «на заказ» $3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$ $2-3\%/\sqrt{E} \oplus 0.5-1.4\% \oplus 0.0-0.2/E$

Неоднородные калориметры

Полупроводниковые (Si)

- ✓ Высокая плотность
- ✓ Хороший сигнал
- Радиационная стойкость?
- 🗙 Дорого

Инертная жидкость

- ✓ Хорошая радиационная стойкость
- Однородность детектора
- Легко калибрируются
- ✓ Хорошее разрешение
- Кирального и Карального и очистительного оборудования ≤10%/√E(GeV)⁻

Газовые $\leq 20\% / \sqrt{E(\text{GeV})}$ X Низкая плотность 🗙 Плохая стабильность X Плохая однородность ALEPH Легко сегментируются ✓ Дешево <mark>Сцинтилляторы</mark> 5.7–18%/ SED ✓Легко сегментируются ✓ Не дороги ✓ Быстрый сигнал Достаточный световыход ✓ Компенсируемые X Старение, радиация X Неоднородноєть световыхода

Детекторы переходного излучения

Фотоны переходного излучения возникают при переходе ультра-релативистской заряженной частицы (γ=E/m>10³) из одной среды в другую

Провода в «соломенных трубках» заполненых 70% Хе+27% СО₂+3% О₂ Радиатор: полипропилен (волокна/фольга)

Из-за малой массы скорость электрона выше других частиц той же энергии.

Больше переходных фотонов. Больше высокопороговых сигналов.

Идентификация электронов 1<p_T<150 ГэВ