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A Neutrino Factory design
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Muon Cooling
Principle

Muons produced from @
decay have large phase /
space (emittance)

Cannot efficiently inject into b
accelerator

Must cool (reduce spread of

angles and momenta)

Short lifetime (t=2us)

—> cannot use conventional
(stochastic, electron)

cooling

Use ionisation cooling pt[
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Muon Cooling

Cooling aim: >4 — 10 increase in muon flux beam in
| 4xim rf @40 MHz,
2MV/m, 0°
24cmH
44m
Cooling |
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no Hydrogen
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MICE — Muon lonisation Cooling

Experiment
Aims
» Design, build, commission and operate a
section of a real cooling channel

» Solve the engineering challenges

* Measure performance under a variety of
beam conditions

» Test a variety of energy-absorbing media
— Liquid H,
— LiH
— Carbon, ...

* Produce data required for optimised design
of Neutrino Factory cooling channel
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Principles

« Generate a diffuse (uncorrelated) muon beam
— Produce pions at target
— Select collimated momentum bite

— After drift, select lower momentum muons (from = decay)
— Pass through “diffuser” (scatterer)
— Verify muons by particle id

* Measure muons’ position and momentum (vector)

* Pass through cooling channel (dE/dx & RF)

* Measure new position & momentum

* Verify particles are still undecayed muons

« Calculate change in emittance from selected
“beam”

* Repeat for other momenta, energy absorbers,

magnetic field configurations, etc.
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MICE collaboration

Universite Catholique de Louvain Belgium
St.Kliment Ohridski Univ. of Sofia Bulgaria
INFN: Milano, Napoli, Pavia, Roma IIT Italy
KEK, Kyoto Univ., Osaka Univ. Japan

ICST Harbin China 3 continents

9 countries
NIKHEF The Netherlands | 3,5 1t ite members

CERN 140 individual members
DPNC, PST Switzerland - Engineers & physicists (part.& accel.)

e
|
1
®
]
—

Cockcroft Lab, Daresbury Lab, Brunel, Glasgow, Liverpool, Imperial,
Oxford, RAL, Sheffield, Warwick UK

B= ANL, BNL, Fermilab, LBNL, Muons Inc., ITT, New Hampshire, Towa,
UCLA, Jefferson Lab, Mississippi, Riverside US

K

Chris Booth University of Sheffield 8



Overview

| Coupling Coils 1+2 |

Spectrometer NMatching Focus
solenoid 1 coils 1.1+1.2 coils 1

Focus Matching Spectrometer

| Focus coils 2 | coils 3 coils 2.1+2.2 solenoid 2

A

TOF O - |RFcavitiesl| |R.'Fcaﬁﬁesz‘
Chepentior

F Y

| Liquid Hydrogen absorbers 1,2,3

Chris ‘ Incoming muon beam

Trackers 1 & 2
measurement of emitiance in and out




Upstream Beam-line
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Target Mechanism
Titanium target dips into accelerated proton beam.
Dip rate ~1 Hz, on demand

EM linear motor: acceleration ~850 ms—2 to sample
correct time.

Installed January 2008. >190K pulses used for beam
& detector commissioning.

Reliability problems with parallel “"demonstrator”
system led to mechanical redesign.

New target will be installed in August
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_ Upstream
quad triplet
and dipole

* Mechanical repairs
completed

* Multi-layer insulation
renewed

« Commissioned at full
field successfully

13




Fibre Tracker
5 Scintillating fibre stations P )

* Double fibre layers (0.35mm
diameter).

* Triplet of layers (120°) per
station.

« VLPC readout.
« 8-10 photo-electrons per layer.

« ~0.6 mm resolution per plane
(verified with cosmics).

« 4T superconducting solenoid.




Liquid Hydrogen Absorbers

Novel H, system based
on metal hydride beds

— Produce H, when warmed,
absorb it when cooled

)/_ 5/C Magnet Vacoum
— Technology developed for . || -
H, automobile industry “a“ '_ X
. : Hydrogen Duct — |/ N Coil Mandrel
— Intrinsically (relatively) 7 //»\/
Safe SC Coil 1m0
. ST e—— Absorber Body
CryO-COOIerS Absorber Liguid Window — —— Safety Window
— Compact, closed-circuit Liquid H, Liquid He——
refrigeration units —_r D T
Absorber Vacuum . qis-t' Coil 2
Superconducting NE T
AFC Modole Vacuum Y essel » Y F
magnets \ N\ /

— Low B environment
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201 MHz RF Cavities

Large aperture

— for uncooled muon beam)
High Q & high
accelerating gradient
Thin curved beryllium

windows
— Minimise multiple scattering

— Double-curved shape
prevents buckling caused
by thermal expansion due
to RF heating

Tests underway at FNAL

— Operation in large magnetic
fields
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Cherenkov
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Time of Fllght/Trlgge

» 2 stations upstream + 1 downstream

« 2.5 MHz rate (for 1 ms) at TOFO
» Modular (12x12) design
» Fast scintillator BC404 or 420
» 2.5 cm thick (compromise timing vs. scattering!)
» Fine-mesh PMTs
(e.g. Hamamatsu R4996) + magnetic shielding + modified base

 TOF 0/1 commissioned in 2008 using 300 MeV/c w*

« ~52 ps resolution achieved. n/u/e separation.
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Electromagnetic calorimeter/ranger

electron/muon -ranger (EMR).
FRONT

* 1 mm scintillating fibres in 0.3
mm grooved lead foils.

* 4x4 cm? blocks, pm at each end.

* Muons punch through as mips;
electrons produce shower.

72 cm

BACK

» 49 layers of 59 triangular bars.
« WLS fibre light-guides

* 64-pixel PMT
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Projected Measurement of Cooling

Cooling Measurement
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Target: “Measure 10% cooling to 1%” - i.e. 0.1% absolute
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i QV ;45_ MICE schedule (April 2009). _
AHKI STEP1 _fix DS + new target
Run: Sep09
_»‘I:I<|i_.-d STEP II _ Deliv $5-1 Jun09
_ Run: Q4 2009
Deliv SS-2 Sep09
Mi_:::@“'ﬁm II STEP II/IIL1 cliv 552 Sep

Deliv FC-1 Feb10
Run: Q2-3 2010

STEPV
Run: 2011

e el

I STEP VI

|-'-'._'!|
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Conclusion

MICE will make a detailed study of cooling
under a wide variety of conditions.

Construction is well underway.
Beam characterisation started last year.
Step 1 will start this summer; Step 2 in Autumn.

Cooling measurements will occur (with
iIncreasingly sophisticated/realistic setups) over
next three years.

We should provide valuable input for design
studies, to enable construction of a Neutrino
Factory from the middle of the next decade.
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