

Status of neutron facilities

David Findlay Accelerator Division ISIS Rutherford Appleton Laboratory / STFC

IOP Particle Accelerators and Beams Annual Conference 2009

ologv

Neutron facilities

- Fission-based
- **Fusion-based**
- Accelerator-based
 - Irradiations
 - **Nuclear physics**
 - Therapy

Atomic and molecular physics Spallation neutron sources

Current high power proton accelerators running spallation neutron sources:

PSI (Villigen, Switzerland) SNS (Oak Ridge) LANSCE (Los Alamos) ISIS (RAL, Oxon.) J-PARC (Tokai-mura)

ESS

CSNS

IPNS (closed 2008) KENS (closed 2005) Decreasing mean proton beam power

Guinness Book of Records — can no longer show this photo

What are spallation neutron sources for?

Basically, for unravelling the structure and dynamics of molecules

For neutrons, *very* roughly, $1 \text{ Å} \approx 0.1 \text{ eV}$

Pulsed (except PSI)

Neutron and light sources complementary

X-ray cross-sections

Neutron cross-sections

Need ~meV neutrons, not ~MeV neutrons, so moderation

R&D fields for spallation neutron sources

Spallation neutron sources are **user facilities** — users don't care about the accelerators

Factors for success of accelerator-based user facility

Proton power \leftarrow sometimes wrongly consider only this Proton conversion to neutrons Reliability Instrumentation Innovation Investment Support facilities Support staff Cost effectiveness User community \leftarrow this is key

PSI	590 MeV cyclotron — not pulsed	1.2 MW
SNS	1 GeV H⁻ linac + accumulator ring	0.9 MW ²
LANSCE	800 MeV H ⁺ / H ⁻ linac + accumulator ring (0.1 MW)	0.8 MW
ISIS	70 MeV H⁻ linac + 800 MeV H⁺ synchrotron	0.2 MW
J-PARC	180 MeV H ⁻ linac + 3 GeV + 50 GeV synchrotrons	0.2 MW ¹

1: For limited time during commissioning; ultimate design 1 MW with 400 MeV linac.

2: Still commissioning; 1 MW design operation.

ESS	~2.5 GeV, 50 mA, 2 ms, 20 pps linac + no accumulator ring	5 MW
CSNS	81 MeV H ⁻ linac + 1.6 GeV H ⁺ synchrotron	0.1 MW ³
MW ISIS	3 GeV synchrotron 800 MeV injection from synch. or	1–5 MW linac

Wide range of architectures — not yet any obvious "best"

3: Phase 1 only. Upgradeable to ~0.2–0.5 MW in Phases 2 and 2'.

Target just as important as accelerator Water-cooled plate target OK to ~1 MW Hg targets used at SNS and J-PARC Cavitation pitting issues?

- Pb-Bi target proved at 1 MW at PSI
- Proposed: rotating target

Important to couple moderators to primary target as closely as possible

PSI — Villigen, Switzerland 870 keV Cockcroft-Walton

72 MeV 4-sector cyclotron

590 MeV 8-sector cyclotron 2 mA DC ~200 turns 51 MHz RF resonators, gap voltage ~1 MV

Target: lead rods in zircaloy tubes, heavy water coolant

Megapie — 1 MW protons on to Pb-Bi target (2006)

Also: muons, therapy

PSI — Villigen, Switzerland

PSI spallation target

SNS — Oak Ridge, Tennessee

- First pulsed superconducting proton linac
- 2.5 MeV RFQ 402 MHz
- Beam chopper slow wave
- DTL to 86 MeV, coupled-cavity linac to 195 MeV 402 MHz
- Superconducting linac to ~1000 MeV 805 MHz
- Accumulator ring 1.06 and 2.12 MHz
- Target: mercury in stainless steel vessel
- DTL uses permanent magnet quadrupoles
- Issues of reproducibility of performance of SCL

SNS — Oak Ridge

SNS cavity gradients — from EPAC-08

- LANSCE Los Alamos, New Mexico
- 2 × 750 keV Cockcroft-Waltons H⁻ + H⁺ simultaneously
- Beam chopper slow wave
- DTL to 100 MeV 201 MHz
- Coupled-cavity linac to 800 MeV 805 MHz
- H⁻ + H⁺: good alignment important
- Accumulator ring PSR 2.80 MHz
- Target: tungsten
- Oldest such facility began 1972

LANSCE

(inactive, but proposed as Advanced Fuel Cycle test facility, H*) 13 Neutrons (H) Lujan Center 11A/B WNR Target 2 ER-2 AreaA 10 * WNR Target 4 Ø the early ER-1 1201 301 Area D (H) Area C PSR 15L 30L Lujan Target (1L) Proton Radiography (H) 5 90R Weapons Neutron Research Facility (WNR) 30R 15R Side-Coupled Linear Accelerator Isotope Production Facility (H*) 100 MeV Ę 0.75 MeV H+ Source H- Source The True 1000 0.00 200 ----

LANSCE

ISIS — world's most productive spallation neutron facility ISIS J-PARC, LANSCE, PSI, SNS Decreasing number of target stations

ISIS: 800 MeV protons on to tungsten targets, 0.2 MW TS-1, 0.16 MW, 40 pps; TS-2, 0.04 MW, 10 pps ~800 neutron experiments per year ~1600 visitors/year (~5000 visits)

Also: muons

ISIS — Oxfordshire

ISIS 70 MeV H⁻ DTL 202 MHz

ISIS 800 MeV proton synchrotron 1.3–3.1 and 2.6–6.2 MHz

TS-1, plates

Tungsten targets

TS-2, solid cylinder

- J-PARC Tokai-Mura
- 3 MeV RFQ 324 MHz
- Beam chopper RF, deflecting
- DTL to 50 MeV, separated DTL to 191 MeV 324 MHz
- Synchrotron to 3 GeV 0.94–1.67 and 1.88–3.34 MHz

Mercury target

DTL uses electromagnetic quadrupoles

High Intensity Proton Accelerator Project J-PARC

Pacific Ocean

J-PARC RFQ, linac, synchrotron (injection) and target

ESS Scandinavia, Lund — 5 MW long pulse

Possible ISIS upgrades

800 MeV linac, 3 GeV synchrotron and TS-3 on RAL site

Modelling for high power proton accelerators ~1 W/metre for ~1 MW — very challenging

Operational issues for high power proton accelerators

Minimise beam losses to minimise induction of radioactivity in machine structures

Key operational consideration: minimise doses to people!

Explicitly include handling/working implications during design

Currently interesting time for spallation neutron sources 2 × 1 MW ~\$1½B pulsed — will complement CW 1 MW Looking forward to next few years

