

Rn removal for ultra low background liquid xenon base detector

Masaki Yamashita Kamioka Observatory, ICRR, the University of Tokyo

April/05/2017 XsSAT2017, Khon Kaen, Thailand

Masaki Yamashita

Motivation

-Rn is one of the major background for ,especially, the future dark matter experiments.

Motivation

- -Rn is one of the major background for ,especially, the future dark matter experiments.
- -Currently it has X 10 or more than pp solar neutrino and the goal for future experiments is to reduce 1/100 or more. $\sim 10 \,\mu Bq/kg$ (=> $\sim 1x10^{-4}$ dru)

Masaki Yamashita

Motivation

- -Rn is one of the major background for ,especially, the future dark matter experiments.
- -Currently it has X 10 or more than pp solar neutrino and the goal for future experiments is to reduce 1/100 or more. $\sim 10 \,\mu Bq/kg$ (=> $\sim 1x10^{-4}$ dru)
- -Dark matter detector can be used for not only WIMP search but also
 - -neutrino physics such as pp/7Be, double electron capture, double beta decay
 - -axion or axion like particle
 - -model independent search by annual modulation and so on.
- -It is very important to reduce Rn background in the future experiment.

Background Budged for low background LXe detector

Dark Matter Search

BG in the fiducial volume before any kind of PID

- pp solar neutrino (v+e -> v+e)
- 2νββ 136Xe
 - -it can be reduce if you have depleted Xe.
- 85 Kr
 - -The goal is less than 0.1 ppt.
 - Less than a few ppt Kr in Xe was achieved by some groups. (e.g. distillation)
- ²²²Rn background
 - -²¹⁴Pb daughter beta decay
 - -Currently, X 10 or more than pp Solar neutrino
- Ultimate background will be neutrino coherent scattering(solar atmospheric)

Comparison of background rate

- Background rate in the fiducial volume before separation of nuclear recoils from e/γ.
- XMASS achieved O(10⁻⁴) event/ day/kg/keVee at a few 10's keV.
- Even modest background at low energy, XMASS has good sensitivity with a large mass (832 kg) and low energy threshold. (~ 1keVee) by annual modulation search.

Added to D.C. Malling thesis (2014) Fig.

Search by XMASS

light mass WIMP

Phys. Lett. B 719 (2013) 78

Inelastic scattering

PTEP 2014, 063C01

coherent v-n scattering

Supernova

super-WIMPs(ALPs)

Phys. Rev. Lett. 113 (2014) 121301

anual modulation arXiv:1511.04807v1

Rare decay search
Double electron capture

arXiv 1510 00754 Masaki Yamashita, ICRR, Univ of Tokyo

Rn background in the dark matter community

Experiment	LXe Mass[kg]	222Rn[μBq/kg]
XMASS	832	9.8±0.6
XENON100	62	33.4±1.3
LUX	270	20
PandaX-II	500	8.6±4.6

XMASS: K. Abe et al. NIM A 716 (2013) 78

XENON100: E. Aprile et al. arXiv:1702.06942v1

LUX:arXiv: D. S. Akerib et al. PRL 112, 091303 (2014)

PandaX-II: A. Tan et al. PhysRevLett.117.121303 (2016)

1μBq/kg ~ pp solar

Rn removal from gaseous xenon with activated charcoal

Nuclear Instruments and Methods in Physics Research A 661 (2012) 50–57

Contents lists available at SciVerse ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

Radon removal from gaseous xenon with activated charcoal

K. Abe^a, K. Hieda^a, K. Hiraide^a, S. Hirano^a, Y. Kishimoto^a, K. Kobayashi^a, Y. Koshio^a, J. Liu^b, K. Martens^b, S. Moriyama^a, M. Nakahata^{a,b}, H. Nishiie^a, H. Ogawa^a, H. Sekiya^a, A. Shinozaki^a, Y. Suzuki^{a,b}, O. Takachio^a, A. Takeda^a, K. Ueshima^a, D. Umemoto^a, M. Yamashita^a, K. Hosokawa^c, A. Murata^c, K. Otsuka^c, Y. Takeuchi^c, F. Kusaba^e, D. Motoki^{d,*}, K. Nishijima^e, S. Tasaka^f, K. Fujii^g, I. Murayama^g, S. Nakamura^g, Y. Fukuda^h, Y. Itowⁱ, K. Masudaⁱ, Y. Nishitaniⁱ, H. Takiyaⁱ, H. Uchidaⁱ, Y.D. Kim^j, Y.H. Kim^k, K.B. Lee^k, M.K. Lee^k, J.S. Lee^k

The XMASS Collaboration

^a Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Kamioka, Hida, Gifu 506-1205, Japan

^b Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan

^c Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan

^d School of Science and Technology, Tokai University, Hiratsuka, Kanagawa 25 9-1292, Japan

^e Department of Physics, Tokai University, Hiratsuka, Kanagawa 25 9-1292, Japan

^f Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan

^g Department of Physics, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan

^h Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan

ⁱ Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8602, Japan

^j Department of Physics, Sejong University, Seoul 143-747, South Korea

^k Korea Research Institute of Standards and Science, Daejeon 305-340, South Korea

Rn removal by charcoal

- It is well known that Rn in Air/Ar can be effectively removed by the activated charcoal. (e.g. RADIOISOTOPES,59, 29-36 (2010))
- In 2009, for the first time, we reported about Rn removal in gaseous xenon with activated charcoal.
- Our finding was that Rn actually was not absorbed by the charcoal (Shirasagi G2X 4/6) but it only slow down the propagation speed in low temperature charcoal in gaseous xenon.
- From our measurements we infer a linear relationship between the mean propagation velocity vRn of radon and vXe of xenon in the trap with $V_{Rn}/V_{Xe} \sim 1/1000$ at -85°C.

Rn/Xe velocity in the charcoal

- Rn injected in the circulation system with Rn detector
- We observed 'oscillation' of Rn concentration and from arrival time information, we measured a velocity of Rn in the charcoal.

Set up (Abe et al. NIM A 661(2012) 50)

- Based on that study, we built a removal system with 5.5 kg
 (Shirasagi G2X 4/6).
- Xe 1 L/min with V_{Rn} will be 1.47x10 3 m/s in the charcoal housings
- T_{Rn} becomes about 14.7 days.
- This corresponds to 3.8 half-lives of
 222Rn or an expected reduction by ↓
 a factor of 1 (1/2)^(14.7/3.8) ~0.93

5.5 kg charcoal test

estimated emanation <3.1mBq
estimated from 120°C temperature.

Rn source

- •Rn source current set up
- •It is called 'radium ceramic ball' to have Onsen(hot spring) at home!!
- buy at Amazon

Charcoal A

At same time we are looking for new material as well.

HPGe couing (U-chain)

NIM(2011) Shirasagi 67+/-15 mBq/kg Charcoal A < 11.9 mBq/kg (90%CL)

Tested with Rn source. (next page)

filte

Plan for Testing in XMASS

-φ10m x 10m ultra pure water shield with 20 inch x 70 PMTs for muon veto

Summary

Dark Matter Search

- •Rn will be the one of the main background for future dark matter experiment with liquid xenon.
- •The activated charcoal was tested for this purpose and we found that Rn atom moves more slower than Xe atom in the cold charcoal.
- Prototype Rn removal test show ~1/10 reduction
 @1L/min and will be test in XMASS detector.

