

LHC detector upgrades

Introductory comments on electronic issues

Organisation of this short session

Example: CMS

- To operate at $L = 10^{35} \text{ cm}^{-2}.\text{s}^{-1}$
 - Most of CMS will survive & perform well with few changes
 - Clear ideas of what needs to change
 - But not yet ready with detailed plans
- Must benefit from electronic technology evolution
 - Expect major upgrade of off-detector electronics & DAQ systems, especially trigger
- Tracking system requires replacement
 - Higher granularity
 - Greater radiation tolerance
 - L1 triggering using tracker is desirable (or essential?)

Upgrade issues

- Machine parameter definition what must be known for serious design to begin?
 - For electronics: clock speed
- Building blocks
 it would help to have foundations in place
 - Standard optical link technology
 - Clock/trigger/control provision & distribution
- Critical issues
 upgrade may not be possible without solution
 - Provision of power

CMS Tracker material budget

- Physics performance would benefit from less material
 - Pixel systems will not reduce power density
 - inner microstrips: ~400 W.m⁻² Pixels: ~5000 W.m⁻²
- Modern ASIC technologies might use less FE power
 - But N_{channels} will increase, & use of lower V_{supply} increases currents
- Power reduction and delivery are <u>huge</u> challenges

CMS Tracker services layout

Experience tells us this will come last even with rigorous systems design appropachicker services

- Complex, congested routes for services
 - Next time, they must fit same volumes
- Heat load of cables must be removed

•
$$P_{cable} = R_{cable} (P_{FE}/V_s)^2$$

- Cable voltage drops already exceed ASIC supply voltages
 - ASICs have limited tolerance to excursions

Cooling costs

- Using power has heavy material cost
- For present pixel system
 - Power in ~4%
 - Power out ~29%
- For microstrips
 - Cables ≈ Cooling
 - Cables + Cooling + Support≈ 2x (Sensors+ Electronics)

→ 1.93% / layer

Potential synergies

- Dialogue between ATLAS & CMS well under way
 - But common solutions are not guaranteed
- Possible common efforts
 - ASIC processing runs
 - in CMS & CERN worked well for 0.25µm CMOS
 - Development of common SLHC systems
 - Optical links and Timing-Trigger-Control system
 - Power issues
 - Dialogue with machine
 - Special tooling
 - removal and installation of irradiated systems in irradiated environment
 - Information exchange via regular meetings
 - Annual LECC workshops are one common forum for electronic R&D

Conclusions

- Upgrade R&D phase is slowly beginning
- Time available is never enough
- Good foundations will help deliver