12th Workshop on Electronics for LHC and Future Experiments 25-29 September 2006, Valencia

An Error-Correcting Line Code for a HEP Rad-Hard Multi-GigaBit Optical Link

Giulia Papotti

Universita' degli Studi di Parma

CERN (European Organization for Nuclear Research)

Outline

- motivation
 - TTC and GBT
- coding requirements for optical links
 - radiation environments
- line code architecture
 - main building blocks
 - two options
- properties of the presented line code
 - error correction capability
 - implementation complexity
 - DC-wander
- demonstrator ASIC implementation

TTC system

- distribution at the LHC of:
 - Timing: LHC clock
 - need clean clock
 - L1 Trigger
 - need low latency
 - only 1 bit information
 - "slow" Control
 - 1 bit per LHC clock, to build longer frames
 - total: 2 bit per bunch crossing = 80Mb/s

Gigabit Bidirectional Transceiver

- upgrade of the TTC link for SLHC
 - still need low latency and precise timing
 - bidirectional
 - broadcast and point-to-point
 - recent tech allows higher line speed
 - more bits per bunch crossing
 - more than only 1 bit for L1T
 - slow control can now be "fast"
 - protect trigger information with EC schemes

Line code requirements

- sufficient timing information for clock recovery (bit lock)
 - ~20ps jitter required
- dc-free line bit stream for AC coupling
 - statistically same number of 1s and 0s on the line
- frame synchronization (frame lock)
 - framed stream for bunch crossing information
- non periodic stream
 - low pattern dependent jitter
- high efficiency / little redundancy
 - to keep noise bandwidth and circuitry rate minimum

Optical links in rad environment

- ASIC hardening
 - Total Dose and Single Event Effects
 - layout (i.e. ELT) and circuit (i.e. majority voting) techniques
- Optical components
 - increased power budget
 - photodiodes detect high energy particles as light
 - radiation particle creates a current by ionization
 - if current high enough, detect a false signal

Line code requirements (2)

- sufficient timing information
- dc-free line bit stream
- frame synchronization (frame lock)
- non periodic stream
- high efficiency / little redundancy
- error-correction capability
 - target: photodiode SEU
- low latency

Existing line codes

- scrambling
 - randomizes data with no bandwidth increase
- CIMT
 - Conditional Inversion + one Master Transition
- 8b/10b
 - mapping that guarantees minimum number of transitions and DC-balance
- 64b/66b
 - lower overhead needed for 10Gb Ethernet
 - scrambler + fixed transition for frame lock

Error correction and line codes

- this leads to error multiplication
 - need more complicated EC algorithms
 - more time consuming
 - ex: error multiplication with 8b/10b

Proposed code block scheme

- line coding external to RS
 - to avoid error multiplication

- two options
 - 64-bit data word converted in 88-bit line word
 - code efficiency: ~73%, line speed: ~3.52 Gbps (@ 40 MHz)
 - 60-bit data word converted in 90-bit line word
 - code efficiency: ~67%, line speed: ~3.60 Gbps (@ 40 MHz)
 - lower efficiency but higher error correction capability

Scrambler

- randomizes the data with no bandwidth increase
- Linear Feedback Shift Register
 - long LFSR: better randomization
- self-synchronizing
 - broadcast link!

Reed-Solomon EC - 1

- family of linear cyclic block codes
 - very good efficiency
 - very good modularity/scalability
- feature: treat groups of m bits as single entities
 - correct burst errors
 - used in cds and space communication
 - m-parallel structure

1-bit error	
error burst	
RS symbols, m=4	

Reed-Solomon EC - 2

- encoding done via LFSR (cyclic code)
 - performed in 1 T_{FRAME}
- decoding: 4 "steps"
 - complexity growing with number of correctable errors
 - correct only one error
 - latency issues
 - with interleaving
 - for extended EC capability
 - performed in 2 T_{FRAME}

"m=4" option

giulia.papotti@cern.ch

"m=3" option

giulia.papotti@cern.ch

Summary of the two options

code char.	"m=4" option	"m=3" option
L interleaved bl.	2	4
N _s	10	7
K _s	8	5
$N_{b} = N_{s}Lm$	80	84
$K_{b} = K_{s}Lm$	64	60
scr. order n	63	60
Н	8	6
$N_{tot} = N_{b} + H$	88	90
eff.= K _b / N _{tot}	~73%	~67%
Err.Corr.	1+1/2	1+3/4

• "m=4" option: higher efficiency

• "m=3" option: higher error correction capability

Simulation results

- average run-length about 3 bits
- verification of DC-balance
 - not compromised by the fact that scrambling is performed before RS encoding

Implementation complexity

- for the .13um tech and Artisan digital library

Module	Cell count	Power cons. (dyn)
1 st option enc.	1066	5.2 mW
2 nd option enc.	1098	6.4 mW
1 st option dec.	2794	10.6 mW
2 nd option dec.	2402	13.3 mW

- second option slightly more "expensive"

- double error correction without interleaving
 - 3x cells and power
 - and worse >2x as much time for decoding

Line code demonstrator ASIC

- "m=4" option implemented
- encoder and decoder can be tested separately or back-to-back
- limitation about number of pads required multiplexing and demultiplexing

ASIC implementation details

- 0.13µm technology
- ARTISAN standard cell library
- area: 1mm x 1.3mm
- encoder:
 - ~1700 cells
 - ~25mW/GHz
- decoder:
 - ~5000 cells
 - ~50mW/GHz
- successfully tested

Summary

- line code requirements
- proposed line code blocks
 - scrambler + RS error correction + header addition
 - 2 options
 - 73% efficiency for (1+1/2) error correction capability
 - 67% efficiency for (1+3/4) error correction capability
- code simulation results
 - average run-length < 3 bits</p>
 - DC-wander well within 1% of eye opening
- ASIC implementation
 - fully digital chip was produced and successfully tested

Header addition

- governs the frame locking mechanism
 - repeated header recognition allows locking
 - repeated wrong header causes out-of-lock
- need to distinguish three block types
 - "data", "idle", or "trigger"
 - done through different header patterns
 - SEU tolerant and DC-balanced
 - 5 bits minimum

visually (1st option)

giulia.papotti@cern.ch

visually (2nd option)

giulia.papotti@cern.ch