Algorithms for the ROD DSP of the ATLAS Hadronic Tile Calorimeter

Belén Salvachúa and Arantxa Ruiz-Martínez IFIC – Universidad de Valencia

12th Workshop on Electronics for LHC and Future Experiments

12th LECC06 - Valencia 28/09/2006

ATLAS detector

Hadronic Tile Calorimeter

28/09/2006

Hadronic Tile Calorimeter

Read Out Chain

12th LECC06 - Valencia 28/09/2006

Processing Units: DSP

Eight functional units: TMS360C6414xTM Texas Instruments

2 multipliers

- 6 arithmetic and logical units
- 8/16/32-bit data support
- 40-bit arithmetic options
- Clock cycle of 720 MHz
- Memory: 1056 Kbytes
 - 32 Kbytes cache
 - 1024 Kbytes RAM

Real time fixed-point processor

Processing Units: DSP

- Eight functional units:
 - 2 multipliers
 - 6 arithmetic and logical units
- 8/16/32-bit data support
- 40-bit arithmetic options
- Clock cycle of 720 MHz
- Memory: 1056 Kbytes
 - 32 Kbytes cache
 - 1024 Kbytes RAM
- Real time fixed-point processor

TMS360C6414xTM Texas Instruments

TileCal commissioning setup

12th LECC06 - Valencia 28/09/2006

TileCal commissioning read out

12th LECC06 - Valencia 28/09/2006

Reconstruction Algorithms

Requirements:

- Send reconstructed information to the 2nd level trigger
- Work in real-time at 1st level trigger rate
 - LHC rate: 100 kHz
 - First years rate: ~50 kHz
 - Commissioning rate (during July-August 2006): ~1Hz
- Proposed algorithms:
 - Optimal Filtering:

Reconstruction of the energy and arrival time of the particles

Muon Tag:

Identification of low transverse momentum muons

Optimal Filtering

WEIGHTS

The process to calculate a, b, minimizes the effect of the noise in the amplitude and time reconstruction. But they are calculated assuming small phases.

ns

Optimal Filtering

Configuration for LHC

WEIGHTS

The process to calculate a, b, minimizes the effect of the noise in the amplitude and time reconstruction. But they are calculated assuming small phases.

Optimal Filtering with 1 iteration Commissioning configuration

First iteration:

Second Iteration:

AMPLITUDE

$$A_{1} = \sum_{i=1}^{n} a_{i} \big|_{\tau=0} (S_{i} - p)$$

AMPLITUDE

$$A_{2} = \sum_{i=1}^{n} a_{i} \big|_{\tau = \tau_{1}} (S_{i} - p)$$

PHASE

$$\tau_1 = \frac{1}{A_1} \sum_{i=1}^n b_i \Big|_{\tau=0} (S_i - p)$$

 $\tau_{2} = \frac{1}{A_{2}} \sum_{i=1}^{n} b_{i} \big|_{\tau = \tau_{2}} (S_{i} - p)$

12th LECC06 - Valencia 28/09/2006

Optimal Filtering with 1 iteration Commissioning configuration

First iteration:

Second Iteration:

AMPLITUDE

$$A_{1} = \sum_{i=1}^{n} a_{i} \big|_{\tau=0} (S_{i} - p)$$

PHASE

$$\tau_1 = \frac{1}{A_1} \sum_{i=1}^n b_i \Big|_{\tau=0} (S_i - p)$$

AMPLITUDE

$$A_2 = \sum_{i=1}^n a_i \Big|_{\tau = \tau_1} \left(S_i - p \right)$$

$$\tau_{2} = \frac{1}{A_{2}} \sum_{i=1}^{n} b_{i} \big|_{\tau = \tau_{2}} (S_{i} - p)$$

12th LECC06 - Valencia 28/09/2006

Muon Tag

- 1. Look into cells $D \rightarrow Possible muon$
- 2. Look into cells BC, following $\eta \rightarrow$ Possible muon
- 3. Look into cells A, following $\eta \rightarrow$ Muon identified

Deposited energy in the cell i should verify:

 $Thr_{low} < E_i < Thr_{high}$

- High threshold: Cut for jets
- Low threshold: Cut for noise and minimum bias

¹²th LECC06 - Valencia 28/09/2006

85% of offline tagged muons are tagged online

12th LECC06 - Valencia 28/09/2006

Result: Processing Time

Conclusions

- Optimal Filtering and Muon Tag algorithms were running during TileCal commissioning July and August 2006
- Optimal Filtering:
 - Amplitude accuracy > 99% for E> 3σ
 - Phase accuracy around 95% for E>3 σ
- Muon Tag:
 - 85% of coincidence offline/online
- Processing time:
 - Opt. Filt and Muon Tag: 29.4 μs
 - Fulfills TileCal commissioning requirements
 - Improvements on the time are expected in the change to assembler