FEC-CCS:

A common Front-End Controller card for the CMS detector electronics.

12th Workshop on Electronics for LHC and Future Experiments *Valencia, September 25-29, 2006*

Kostas Kloukinas CERN PH/MIC-DG

FEC-CCS Design Architecture

Sub-system integration phase

Production Testing

Summary

Front-End Control System Overview

Main Functionalities:

□ Establish control bi-directional links with the Front-End chips.

Setup/configure FE chips.

Read back status information from FE chips and monitor detector environmental parameters.

Distribute Fast Timing signals to the Front-End chips

- 40MHz LHC clock
- Trigger commands

- A common Front-End controller card for the CMS sub-systems.
 - Advantages:
 - Minimize design effort and production cost.
 - Maximize system maintenance and support services.
 - **Requirements:**
 - Accommodate the differences of the CMS sub-systems architectures.
 - Modular design.
 - Flexibility.
 - Conform to the CMS VME electronics specifications.
 - □ The VME FEC-CCS card primary users
 - TRACKER : FEC (<u>Front End Controller</u>)
 - ECAL : CCS (<u>C</u>lock & <u>C</u>ontrol <u>System</u>)

FEC-CCS Block Diagram

- VME 9U, VME64x compatible.
- Modular design:
 1 ~ 8 control rings per board.
- Control information passes through the VME bus.
- Fast Timing Signals passes through the TTC link.

FPGA

Ring A

Ring B

OPTOBAHN

PCI carrier cards

The mezzanine FEC (mFEC)

Fast Timing Functionalities

- Distribute Clock & Trigger Commands to the FE electronics.
 - □ Mapping of TTC B-channel commands to Control Ring Trigger Commands.
 - □ Monitoring of incoming TTC B-channel commands.
 - Masking of individual TTC B-channel commands.

Generate a local 40MHz clock in the absence of the TTC signal.

- Automatic selection of *Remote/Local* Modes.
- User programmable *Forced Local* Mode.

Generate Local Trigger Commands

- □ To support debugging during system integration & commissioning.
- □ To support the operation of stand alone setups (without TTC system).
- Provide support for the ECAL special TTC/TTS bus and functionalities
 - □ TTC signal fan-out to the DCC & TCC VME modules.
 - □ TTS signal fan-in from the DCC & TCC VME modules.
- Interface with external equipment via NIM I/O signals.

- Provides synchronization with external equipment.
 - 3U Rear VME Backplane Transition Board
 - Connects on VME RJ2 connector.

Mapping of TTC B-channel commands to Control Ring Trigger Commands

		TRACKER		ECAL		Preshower		PIXEL		RPCs		
B-Go ch.	TTC Brcst<5:2>	Command	T Ring	Function	T Ring	Function	T Ring	Function	T Ring	Function	T Ring	Function
	0000	Not Used										
1	0001	BC0			101	BC0	101	BC0				
2	0010	Test Enable	110	APV_CALIBRATE	111	Monitoring	111	CalPulse				
3	0011	Private Gap										
4	0100	Private Orbit										
5	0101	ReSync	101	RESYNC	110	ReSync	110	ReSync	101	ResetTBM		
6	0110	HardReset	101	APV_RESET								
7	0111	Reset Event Counter							111	ResetROC		
8	1000	Reset Orbit Counter								Send	NOT I	N USE
9	1001	Start										
10	1010	Stop										
11	1011	Free1							110	CalSync		
12	1100	Free2										
13	1101	Free3										
14	1110	Free4										
15	1111	Free5										
			-						-	-		
TTCrx signal												
L1ACCEPT			100	L1	100	L1	100	L1	100	L1	NOT I	N USE

TTC B-Go channels for the FEC-CCS VME board

- Control Ring Trigger Command Assignments are not common for all the subsystems.
- The decoding of these commands by the Frond-End ASICs is hardwired.

Solution:

Mapping of TTC B channel commands to Control Ring Trigger Commands can be done using a LUT in the Trigger FPGA.

Functionality needed in stand alone DAQ system setups, without a TTC system support.

Generic Logic architecture

- Instead of a hardwired trigger logic customized for a specific test setup, a flexible, <u>user configurable trigger logic</u>, is implemented.
- The Physicists and Engineers can configure the Trigger Generation logic as required for each test system setup.

Flexible and configurable logic

- Generation of
 - Single trigger commands.
 - Bursts of trigger commands.
 - Single shot sequences of trigger commands.
 - Periodic sequences of trigger commands.
- Programmable delays for the timing of the trigger commands.
- Synchronization with external signals.

Local Trigger Generator

Modular design

- □ 8 identical "command channels".
 - 4 Control Ring command channels.
 - 4 Auxiliary command channels.

Trigger Command sources

- User selectable
 - External signals
 - Internal signals
 - Software (VME)

Trigger Command outputs

- Control Rings
- ECAL bus
- NIM Outputs

CMS Prove

Results from Field operations

- Local Trigger Generation Logic use in ECAL system setups:
 - ECAL Test Beam run 2004.
 - Supermodule Integration Hall (Bldg. 867).
 - □ H4 Cosmic calibration stand.
 - □ H4 ECAL Test Beam stand.
 - □ H2 ECAL+HCAL Test Beam stand.
 - □ MTCC (Magnet Test Cosmic Challenge) run 2006.
 - Local mode used for debugging. Remote mode used with TTCci.
- Typical Operations
 - Pedestal Run
 - Software programmed periodic L1 triggers.
 - Electronics Calibration Run
 - Sequence of FE charge injection commands followed by delayed L1 trigger.
 - Laser Calibration Run
 - Command the firing of Laser pulser. Receive trigger from Laser apparatus.
 - Test Beam Run
 - Receive external trigger from counters and NIM logic.

The CMS ECAL case

- **5** different setups in operation:
 - □ Supermodule Integration Hall (Bldg 867)
 - H4 Cosmic calibration stand
 - □ H4 ECAL Test Beam stand
 - □ H2 ECAL+HCAL Test Beam stand
 - MTCC (Magnet Test Cosmic Challenge)

The CMS Tracker case

Tracker electronics system setups:

- Electronics System integration center, bldg. 904
- □ Tracker Integration Facility (TIF), bldg. 186
 - TOB (Tracker Outer Barrel)
 - TIB (Tracker Inner Barrel)
 - TEC+ (Tracker End Cap +)
- Aachen
 - TEC- (Tracker End Cap -)
- □ Firenze/Pisa
 - TID (Tracker Inner Disk)

MTCC test results

- □ Validation of Front-End configuration procedures.
- □ Validation of the Control Ring Redundancy.
- □ Successful integration with the global TTC system.
- □ Validation of the Tracker Trigger Throttling control loops.
 - APVE loop (APV emulator module)
 - FMM loop (TTS signals)

The CMS Tracker case

Tracker Integration Facility CERN building 186

Other CMS subsystems

Preshower

- 20 FEC-CCS cards, 54 mFECs
- □ Use of ECAL bus and special functions.

PIXELs

- 16 FEC-CCS cards, 80 mFECs
- Special mFEC firmware for PIXEL specific Control Rings.
- Special functions implemented on Trigger FPGA firmware.

RPCs

- □ 4 FEC-CCS cards, 25 mFECs
- System used only for FE electronics control.
 - Timing distribution is done with on-detector TTCrx chips.

TOTEM

- □ 4 FEC-CCS cards, 16mFECs
- Use of ECAL bus and special functions

In-house Production Testing.
 CERN ECAL Lab. Bldg. 11.

Custom made production test bench.

- □ Test bench hardware based around a VME crate.
- □ Test bench software prepared by Evgueni Vlassov.
- Operated by a technician.
- Same test bench used for both mFEC modules and VME FEC-CCS cards production testing.

FEC Production Status

mFEC

- mFEC Final Production: Completed
 - **900 modules** tested.
 - 35 rejected modules
 - Post-production run of 50 modules to compensate
- VME FEC-CCS Production: Testing in Progress
 - Pre-production volume: 40 boards
 - Distributed to ECAL, Tracker, Pixels, Preshower & RPCs sub-systems to equip their DAQ test setups.
 - These boards will also be used to equip the final systems in CMS.
 - □ Final production volume: **130 boards**
 - Assembled PCBs delivered at CERN
 - Production testing is in progress.
 - Estimated delivery period ~10/2006.

PIXEL group received full production cards

FEC-CCS User Support

Hardware

- □ mFEC, PCI-FEC (optical, electrical), VME FEC-CCS cards.
- □ Support: CERN MIC group.
- Contact persons: Kostas Kloukinas, Christer Ljuslin and Christian Palliard.

Firmware

- □ Unique Firmware version for all the sub-systems to ease maintenance.
- □ New firmware releases fixes various system "glitches" and adds functionality.
- Anticipate to have firmware revisions during the subsystem integration and commissioning periods.
- □ Visit the FEC-CCS project Web Site for relevant information
 - http://proj-fec-ccs.web.cern.ch/proj-FEC-CCS
 - or GOOGLE it -> (FEC-CCS)

Software

- □ FEC Common Software support:
- Contact person: Frederic Drouhin
- Provide common software user support for:
 - Tracker, ECAL, Preshower, Pixels, RPCs & TOTEM.
- Web Page:
 - http://x5oracle.cern.ch:8080/JSPWiki/Wiki.jsp?page=FECSoftware

- A common FE controller card for CMS sub-systems
 Fulfils the requirements of the CMS sub-systems.
- Modular hardware design and flexible firmware to accommodate the different requirements.
- Successfully tested in numerous sub-system test setups.
- Production testing in final stage.
 Boards are being delivered to CMS subsystems.
- Provide support during detector commissioning period.