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CMS Level-1 Trigger
Position of the Global Calorimeter Trigger in

The CMS Level-1 Trigger system



RCT Data Output
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• 18 RCT Crates cover CMS Calorimeter barrel

• Each Crate covers 0.7 Φ x 5 η region
• Outputs Electron and Jet Information to GCT



GCT Requirements
• Sorts Electrons

– 4 highest Energy
• Finds and sorts Jets

– Top 4 by energy, physical size, tau …
• Sorting criteria may be changed
• Sort by energy for initial implementation

– Algorithm implements 3x3 sliding window
• Requires contiguous data space – spans RCT crate boundaries
• Data sharing scheme needs to be implemented
• This algorithm drives processing requirements

• Processes data at ~250 Gbps
– Latency requirement of 24 bunch crossings

• 600 nS
• Interfaces to 18 RCT crates

– 108, 68 pin parallel cables 
– Differential ECL, not DC balanced
– Need to maintain ground reference with entire RCT

• Entire row of racks on different floor



Jet finder
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• Parallel algorithm implements 3x3 sliding window over each RCT crate’s data 
space

– Overlaps neighboring crates
– RCT data must be shared between Instances

• Instances must be in close proximity
– Same Device if possible
– High bandwidth connection if not

• Note overlap at η0
– Data duplicated
– Sent to both jet finders

• Poster covers this subject in detail
–

Jet finder 1

Jet finder 2

Jet finder 3

“Revised CMS Global 
Calorimeter Trigger 
Functionality & 
Performance”



Design Tradeoffs
• Design on a compressed schedule

– Reduce risk to the extent possible
• Base on existing modules
• Conservative data rates

• Minimize number of FPGAs
– Reduce firmware risk

• Never split algorithms
• Algorithm size and complexity drives FPGA selection
• Easier simulation
• Better synthesis efficiency
• Superior timing (and lower overall power consumption)

• Judicious use of serializer/deserializers
– Most efficient method of concentrating data

• Latency penalty of at least 6 clocks
– Only use on system boundaries

• RCT/GCT
• GCT/GT

– Significant negative impact on complexity of design
• Several cards used mainly as “signal plumbing”



Design Overview
• Three main elements

– Data transport and physical concentration
– Trigger processing
– Data plumbing and sorting

• Data Transport
– Compress RCT data and provide electrical isolation
– Functionally part of the RCT

• What we really wanted it’s output to be
• Trigger Processing

– Implement Jet finders
– Modular processing element

• Data Plumbing
– Large, physically complex boards

• Required to deal with multiple wide parallel busses
– Excellent example of why SERDES technology was developed

• Unfortunately required due to latency constraints



Design Overview
• Modular design with 4 card types

– Source card (based on Imperial College IDAQ VME module)
• Serializes RCT data and transmits on fiber

– Electrically isolates GCT from RCT
– Reduces interface cabling, allows physical data concentration

• Resides in RCT racks
– Also provides RCT readout

– Leaf card (based on Los Alamos digital channelizer double PMC)
• Jet processing and fiber receiver

– Logic capacity driven by Jet finder algorithm
– Also used for Electron sort

– Wheel card (new CERN design)
• Only used for Jet processing
• Carries multiple Leaf cards

– Facilitates Leaf data sharing
• Sorts resulting Jets

– Concentrator card (new CERN Design)
• Electron and final Jet sort

– Carrier Leaf cards for Electron sort
• Interfaces with Wheel cards for final jet sort
• Slow control, TTC, and DAQ interface



GCT Block Diagram

Leaf Card
Wheel CardConcentrator card

63 source cards (not shown)
8 Leaf cards
2 Wheel cards
1 Concentrator



Electrical Interfaces
• LVDS signaling

– Used between Leaf cards, and from Wheel to Concentrator
• Cable based board/board connections
• 40MHz DDR required, but can support faster

– Direct FPGA drive in most cases
• Direct connections provide maximum flexibility and speed
• Wheel/Concentrator Jet data passes through single ended/diff converters

– Pin limits due to large number of signals
– Samtec QTS/H differential connectors

• High density and speed, Rated for multi GHz operation
• Commercial cable assemblies

• DDR used for all single ended I/O
– FPGA intercommunication at 40MHz

• Short runs allow faster operation
– Communication with Leaf cards at 40MHz

• PMC connectors limit speed here
• Leaf cards utilize 2.5V LVCMOS with DCI (nominally 50 ohms at this point)

• Single ended outputs from FPGAs utilize DCI drivers
– Allow controlled impedance drive

• Nominally 50 ohms at this point



Clock Distribution
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• Fully differential distribution tree
• Controlled by cross point switches

• Allows stand alone operation
• Use DLLs in FPGAs to tune if necessary



JTAG System
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Source Card
• Based in IDAQ module designed at Imperial College

– Simplified due to large number required for complete system
• Converts ECL RCT input to SFP optical

– Two VHDCI SCSI inputs, 32 bits at 80MHz
– Four SFP fiber outputs

• Spartan 3 
• 4 SERDES/SFP modules

– 8b/10b encoding
• DC balanced
• 1.6Gbps

– Comma generation (sync)
• TTCrx

– Time synchronization
• USB slow control

– Provides RCT readback



Block diagram
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1. 10 layer PCB
2. USB slow control
3. TTCrx and QPLL
4. VHDCI SCSI inputs
5. Serial SPF outputs

• Agilent HFBR-5720AL
• TLK2501 SERDES

• Rated at 2.5 Gbps
6. Linear power for SERDES/SFP
7. Switching power for FPGA
8. Spartan3 FPGA

• 3S1000



Leaf Card
• Based on satellite channelizer design at Los Alamos Lab

– Modified to include V2Pro and MFP connectors
• Main processing engine of GCT

– Accepts Jet data from 3 RCT crates
– Electron data from 9 RCT crates
– 32 fiber optic links

• SNAP-12 MFP optics
• Rated at 2.5 Gbps

• Jet algorithm drives capacity
– 3M gates/jet finder
– 10 fibers/crate
– 2 V2Pro70 FPGAs



Block Diagram
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1. Clock Distribution
• Local oscillator
• PMC/coax inputs

2. PMC connectors
• 8 fully populated

3. 60 pair differential links
4. Switching power supplies

• 1.5V core and 2.5V I/O
• Phase and freq controlled

5. Linear SERDES supplies
6. 12 channel optical receivers

• Agilent AFBR-742B
7. 14 layer PCB



Implementation
• High density Optical Inputs 

– Cannot fit enough SFP single channel modules
– “Snap 12” parallel receiver

• 12 channels at 2.5Gbps
– Industry standard short distance link

• Xilinx Embedded SERDES links (Rocket I/O)
– Virtex2 Pro devices selected

• V2P70 with 16 links each
• Support improved differential I/O
• Easily obtainable

• No external (off FPGA chip) memory
– Nice to have, but not required for GCT processing

• Double PMC format
– Power supply and basic layout retained from existing design
– Electrically compatible, but too high mechanically

• Not truly PMC compliant 



Routing Parameters
• Length matching

– Differential lines matched to ¼” as a bus
• Yields ½” on board/board connections

– Individual pairs matched to a few mils
• Matched in groups of 8 pairs
• Not required for 40MHz DDR

– Allows significant speed increase
– Single ended lines matched to ½” as a bus

• Matched in groups of 8-12 lines
• Not required for 40MHz DDR

– Allows higher speed operation
– Differential SERDES lines matched to 1-2 mils

• Impedance controlled and individually matched
• Board structure isolates SERDES with ground planes

– 50 Ohm stripline



Test routing



Test routing



Power supplies
• 15A, 1.5V switcher for each V2Pro VccInt

– Devices can be run at thermal limit
• Fan headers on board if needed
• Estimated load less than 1/2 this figure

– 40MHz, 100% utilization yields 6A
• Single 15A, 2.5V switcher for I/O

– Estimated load is ½ of this capacity
• Switchers powered from 5V

– Not used for other logic
– Phase and frequency controlled

• Can optimize noise or efficiency
• Switch out of phase to control surge currents

• Separate linear supplies for SERDES
– Each FPGA has local linear SERDES supply

• Optical receivers powered directly from 3.3V PMC power
– Manufacturer claims this is acceptable



Wheel Card
• Carries 3 leaf cards (double 

PMC)
– Compresses (sorts) Jet data
– Calculates Et and Jet count
– Single ended electrical 

interface (DDR 40MHz)
• Interfaces to concentrator 

board
– High speed cable interface
– LVDS electrical interface

• DDR 40Mhz required, but 
could support higher

• 9U VME form factor
– Power only, no VME interface

• ECAL backplane



Block Diagram 
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Implementation
• Accepts parallel data from leafs on 3 DPMC sites

– 278 signals on each site (total 834)
• 186 signals/site to Jet FPGA, 92/site to Energy FPGA
• Single ended

• Outputs parallel data
– Electrical interface

• 240 differential pairs provided
• Processing

– Two Xilinx Virtex4 FPGAs
– XC4VLX100FF1513

• I/O (as opposed to logic) intensive design
• Advanced Virtex4 I/O features reduce risk

– Better double data rate support
– Improved Differential support

– One for Jet sorting, one for Et and Jet count
• Jet FPGA pin limited

– Requires single ended output to meet signal count
– External differential buffers drive data to concentrator



Power supplies
• 10A, 1.2V switcher for each V4 VccInt

– Devices can be run near thermal limit
• Estimated load less than 1/2 this figure at 40MHz

• Two 10A, 2.5V switchers for I/O
– Leaf cards may be jumpered to provide own VIO

• Wheel will only need to drive own FPGAs
• 10A, 3.3V switcher for each DPMC site

– Board design allows for substitution of 5A Linear
• Would be preferable since optical receivers are powered directly
• Questionable margin requires switcher site be provided

• All Switchers powered from 5V
– Not used for other logic

• Separate linear supply for QPLL and some clock distribution
– 2.5V



Concentrator 
• Carries 2 Leaf cards (double 

PMC)
– Sorts Electron data
– Single ended 40 MHz DDR 

interface
• Interfaces to two Wheel cards

– Sorts Jet data
– Differential 40 MHz DDR cable 

interface
• Provides VME Interface

– Slow control and readback
• TTC interface

– Timing and synchronization
• DAQ Interface

– Slink 
• Carries GT interface PMC
• 9U VME form factor

– ECAL backplane

• Complex design
– Significant Data plumbing

• Congested routing
– Multiple communication Interfaces



Block Diagram
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Implementation
• Processing

– Two Xilinx Virtex4 FPGAs
– XC4VLX100-FF1513

• Must concentrate large amount of 
data

– Choose package with most I/O
• Integrated differential termination 

makes layout simpler
• High speed I/O provide reserve 

capability

• Communication
– Xilinx Virtex2 FPGA
– XC2V3000-BF957

• Robust in 3.3V enviroment
– VME 64x interface
– Slink
– TTCrx

• Electron FPGA
– Isolated Electrons
– Non-Isolated 

Electrons
– Energy Sums
– Jet Counts

•• Jet FPGA
– Forward Jets
– Central Jets 
– Tau Jets

• Power Supplies
– Identical to Wheel

• Number and Type



Status
• Schedule Requirements

– Concentrator, 2 Leafs, and 7 source cards by 1/07
– Full system by 7/07

• Source card
– First articles in hand
– Extensively tested, awaiting integration with leaf

• Leaf card
– First articles in hand
– Testing underway

• SERDES tests to begin the first week of October
• Concentrator card

– In production
– First articles due in mid October

• Wheel card
– In final Layout
– Production order to be placed by mid October


