Physics @ 100 fb⁻¹ x 13 TeV: JetMET Focus

Jim Olsen Princeton University

JME Workshop, Helsinki May 10, 2017

Kick-off Talk!

2016 CMS Luminosity

CMS Integrated Luminosity, pp

Perspective

changing much until HL-LHC

Caveats

- This is not a "Physics Overview" talk, for that you can see for example (if you are in CMS) S. Rahatlou at the Mumbai CMS Week (Nov., 2016)
 - https://indico.cern.ch/event/512834/contributions/2367393/attachments/1 370694/2078730/rahatlou-20161114.pdf
- Instead, I decided to cover a few selected topics that are impacted directly by JetMET calibrations, uncertainties, new ideas, etc., for which some (hopefully) interesting conclusions can be drawn
 - Just a sampling, nowhere near a complete list!
 - Emphasis on questions to you, rather than answers from me; focused on recent Moriond 2017 results

Apologies to ATLAS:

Plots are taken from CMS

What we Publish

Roughly 1/3 BSM searches, 2/3 SM (+HIN) measurements

These proportions are not going to change for 100 fb⁻¹

LHC News

2016 LHC: Production year

Peak luminosity > 1.4 x 10³⁴ cm⁻²s⁻¹ OVER 25 fb⁻¹ in both ATLAS and CMS

TS1 - TS2 : stable beams 58 % TS2 - TS3 : stable beams 54 %

Beam Wizards

Doubling the luminosity with a trick: Beam Compression Multiple Splitting (BCMS)

$$L = \frac{n_{bb} f_{rev} N^2 g}{4 \rho e_n b^*} F$$

Emittance ε is easy to increase but difficult to decrease (constrained by magnets)

Bottleneck comes at the beginning of the LHC injector chain (space-charge effects)

Higher intensity / bunch

BCMS Injection (8 \rightarrow 48)

Lower intensity / bunch

Required bunch intensity is halved in the BCMS scheme, less total current in machine, but...

Luminosity doubled overnight!

Downside: increased pile-up for ATLAS and CMS

2017 scenarios

LHC Goal: 45 fb⁻¹ delivered

Parameter	Standard 25 ns	BCMS 25 ns	BCMS 25 ns Pushed	Comments	
Energy [TeV]	6.5	6.5	6.5		
β* (1/2/5/8) [m]	0.4 / 10 / 0.4 / 3	0.4 / 10 / 0.4 / 3	0.33/10/0.33/3	Either 40 cm as 2016 or further squeeze to 33cm	
Long-range separation [sigma] - assumed emittance	10 sigma - 3.5 um	10 sigma - 2.5 um	10 sigma - 2.5 um		
Half X-angle (1/2/5/8) [μrad]	-185 / 120 / 185 / -150	-155 / 120 / 155 / -150	-170 / 120 / 170 / -150	Went to 140 with lower intensities in 2016	
Number of colliding bunches (1/5)	2736	2448	2448	BCMS - 144 bunches/injection from SPS	
Bunch population	1.25e11	1.25e11	1.25e11	around 1.3e11 injected for both Standard ar BCMS	
Emittance into Stable Beams [µm]	3.2	2.3	2.3	Nominal 2.6 for Standard, 1.4 for BCMS at injection	
Bunch length [ns] - 4 sigma	1.05	1.05	1.05	As 2016	
Peak Luminosity (L0)	1.4e34	1.7e34	1.9e34		
Peak mean pile-up (inel xsection 80 mb)	37	51	56	Fast decay at start of fill	
Average mean pile-up	27	33		NB Have to assume average fill length and lumi lifetime. Assume average fill length of 13 hours (June-July 2016 - optimistic)	
Average luminosity lifetime (tau)	21 hours	15 hours	14 hours	Approx assuming burn only	

Pause and Reflect

- Machine performance in 2017 similar to worst of 2016
 - Sustained peak lumi > 1.4×10^{34} cm⁻² s⁻¹, reaching up to 1.9e34
 - Peak PU > 50 (but average PU \sim 35)
 - If we can deal with the worst of 2016, we should survive this year(?)
 - 2018 is unknown at the moment
- Physics goals for pp running remain unchanged at 100 fb⁻¹
 - Searches searches
 - High-mass resonances decaying to boosted objects
 - High-mass resonances decaying partially to nothing
 - SUSY particles decaying with or without large MET
 - Dark Matter produced in association with everything
 - Increasing interest in rare processes (rare decays, flavor violating, etc)
 - Increasing precision of SM measurements
 - V + jets, VV, Higgs, top, QCD
 - Differential distributions becoming more precise, theory test intensifies
- Question to you: if we are OK @ 36 fb⁻¹, are we OK @ 100 fb⁻¹?
 - My (pre-workshop) answer at the end

Climbing the Fruit Tree

As we climb the tree, improved methods are needed!

Searches for BSM Signals

Dijet Search

String Scalar diquark Axigluon/coloron Excited quark Color-octet scalar ($k_s^2 = 1/2$) 3.0(3.3)3.4(3.6)W' 2.7(3.1)2.6(2.3)2.2(2.2)3.3 (3.6) 2.7 (2.9) 2.1(2.3)1.7(1.8)RS Graviton $(k/M_{PL} = 0.1)$ 1.6 (1.3) 1.7(2.1)1.9(1.8)DM Mediator ($m_{DM} = 1 \text{ GeV}$) 2.6(2.5)2.0(2.0)

Dominant systematic is effect of jet resolution on signal mass shape.

Can new ideas help us 'beat the curve'?

Diboson (HH) Searches

Use H decays to:

- Bottom quarks
- Photons
- W bosons
- Z bosons
- Tau leptons

Are there limitations on Hbb (and Vbb) tagging as PU increases?

V(bb,qq) Tagging with 36 fb⁻¹

Excellent agreement with data

Shapes are ~mostly independent of pT

Is PUPPI all we need?

Do we hit a wall?

Talks this afternoon by P. Harris and M. Dasgupta

V(qq)H(bb) Resonance Search

Diboson (VV) Searches

Reminder: for VV and VH, background comes from fit

Dominant effect from jet energy scale and resolution is on signal shape, and associated efficiency for V(H)-tagger cut

Highly Boosted Top Quarks

Same questions here: do we run into issues with top tagging at high PU? (Here only 2.6fb⁻¹ used)

Hadronic SUSY Searches

Full suite of SUSY searches updated with 36 fb⁻¹ for Moriond

Effect of JES/JER in hadronic SUSY analyses are typically at the ~5% level

Scaling to 100 fb⁻¹ should not present any problems

Dark Matter at the LHC

CMS Experiment at LHC, CERN Data recorded: Mon Jun 13 17:44:28 2016 CEST Run/Event: 274999 / 1837785290

Lumi section: 1029

Monojet event in CMS

CMS Experiment at LHC, CERN Data recorded: Mon Jun 13 17:44:28 2016 CEST Run/Event: 274999 / 1837785290

 $p_T^{jet} = 1.04 \text{ TeV}$ Mass = 79 GeV $p_T^{jet} = 1.04 \text{ TeV}$

Mass = 79 GeV

Check jet calibration using recoil in V+jet events

Look for signal in the MET tail

High-hanging Fruit: DM in Jets?

unstable mesons

stable mesons

Dark Sector stable mesons produced inside jets along with unstable SM hadrons

Consequence: MET aligned with jets!

Can we find DM in jets with 100 fb⁻¹?

M. Lisanti et al.

Standard Model Measurements

Just getting started at 13 TeV, how far can we dig at 100 fb⁻¹?

Is there a floor to some measurements from jet energy/resolution?

Anomalous Top-Higgs Coupling?

More events than expected, not yet significant Lepton final state is most sensitive, what about bb?

ttH(bb)

Complicated final state with up to 8 jets and 4 b jets!

Dominant background contributions from tt + bb/cc

JES is largest source of systematic (@ 13 fb⁻¹)

	CMS Preliminary					
			μ	tot.	stat.	syst.
Dilepton	 ■	 1	-0.04	+1.50	+1.05 -0.96	+1.01
Lepton+jets	 		-0.43	+1.02 -1.02	+0.51 -0.52	+0.88
Combined	⊢+-■-+ -1		-0.19	+0.80	+0.45	+0.66
	-2 0		2	4		6

Best fit $\mu = \sigma/\sigma_{sm}$ at $m_H = 125 \text{ GeV}$

Process	tt̄ rate up/down [%]	ttH rate up/down [%]
Jet energy scale	+12.6/-11.8	+8.4/-8.0
Jet energy resolution	+0.2/-0.3	-0.0/-0.1
Pile-up	+0.1/-0.1	-0.2/+0.1
Electron efficiency	+0.5/-0.5	+0.5/-0.5
Muon efficiency	+0.4/-0.4	+0.4/-0.4
Electron trigger efficiency	+1.2/-1.2	+1.3/-1.3
Muon trigger efficiency	+0.8/-0.8	+0.9/-0.9
b-Tag HF contamination	-9.4/+9.8	-2.6/+2.8
b-Tag HF stats (linear)	-3.1/+3.3	-2.5/+2.7
b-Tag HF stats (quadratic)	+2.6/-2.4	+2.4/-2.2
b-Tag LF contamination	+7.1/-5.2	+5.8/-4.5
b-Tag LF stats (linear)	-2.0/+4.4	+0.5/+1.5
b-Tag LF stats (quadratic)	+2.1/+0.2	+1.5/+0.5
b-Tag charm Uncertainty (linear)	-11.1/+14.9	-3.1/+4.1
b-Tag charm Uncertainty (quadratic)	+0.5/-0.5	-0.0/+0.0

Given in the excess in the leptonic channel, this is a critical analysis @ 100 fb⁻¹

Are there new ideas at the jet reco/calibration/ID level that mitigate PU effects in high-jet-multiplicity events?

Four Tops

5 orders of magnitude smaller cross section than ttbar, sensitive to new physics decaying to top pairs

JES/JER not dominant here, but only 2.6 fb⁻¹ used

Observed limit 69 fb @ 95% C.L. (SM = 9.1 fb)

Assuming sqrt(L) scaling, this channel starts to approach the SM prediction with 100 fb⁻¹

First Look at Top Mass (2.2 fb⁻¹)

Critical parameter in the Standard Model, different methods with different systematic uncertainties

No escaping the jet energy scale (unless you don't use jets!) Fit one overall scale factor simultaneously with m_t

	δm_t	δ JSF
Experimental uncertainties		
Method calibration	0.07	< 0.001
Jet energy corrections (quad. sum)	(0.30)	(0.006)
 JEC: InterCalibration 	0.03	< 0.001
 JEC: MPFInSitu 	0.12	0.001
 JEC: Uncorrelated non-pileup 	0.26	0.004
 JEC: Uncorrelated pileup 	0.11	0.004
Muon energy scale	0.03	< 0.001
Jet energy resolution	0.04	0.001
b tagging	0.05	< 0.001
Pileup	0.01	0.001
Non-tt background	0.19	0.001
Modeling of hadronization		
JEC: Flavor-dependent	0.41	0.001
b-jet modeling	0.18	< 0.001
Modeling of perturbative QCD		
PDF	0.09	0.001
Ren. and fact. scale	0.01	< 0.001
ME/PS matching	0.04	0.001
Parton shower scale	0.23	0.001
ME generator	0.12	0.001
Top quark transverse momentum	0.01	< 0.001
Modeling of soft QCD		
Underlying event	0.18	0.007
Color reconnection modeling	0.22	0.001
Systematic	0.70	0.010
Statistical (expected)	0.38	0.003
Total (expected)	0.80	0.010

$$m_{\rm t} = 172.62 \pm 0.38 \, ({\rm stat.+JSF}) \pm 0.70 \, ({\rm syst.}) \, \, {\rm GeV} \, ,$$

JSF = $0.998 \pm 0.003 \, ({\rm stat.}) \pm 0.010 \, ({\rm syst.}) \, .$

Relatively large systematic due to early JEC

Are flavor corrections under control?

What is the ultimate uncertainty achievable in 100 fb⁻¹?

Talks this afternoon by M. Mulders and A. Hoang on top mass, and J. Kieseler on jet flavor corrections

VBF with $Z + jets (36 fb^{-1})$

Pure EWK production of Z bosons, useful calibration for VBF processes (Higgs, etc)

Classic application of quark-gluon discrimination

Summary

- Physics goals @ 100 fb⁻¹ and 13 TeV largely unchanged from 10 fb⁻¹
- LHC performance in 2017 should match the worst of 2016 (so far so good with 36 fb⁻¹)
- Many new results using full 2016 dataset
 - Pile-up is not killing us yet!
 - Do we cross a threshold before 100 fb⁻¹?
 - I think not, at least in the bulk of analyses
 - Some analyses already systematics limited, there we will benefit from improved JetMET techniques