

Jet&MET overview at CMS

Robert Schöfbeck for JetMET

JME Workshop Helsinki 17/05/09

intro

o the last two years have been a fun ride!! o I want to thank everybody who has worked with me!

- o Think global, act local o quote from our host
 - not really, rather from P. Geddes, 1915
- o Goal of the 4th JME workshop
 - o get ready for 2017 data taking
 - o collect and fix all analysis details where we can improve
 - o establish a plan until 2020 exploiting fully the Run-II dataset

Robert Schöfbeck

team

Batool Safarzadeh

special thanks to the outgoing conveners Ia Iashvili, Mariarosaria D'Alfonso, Jordan Damgov, Andreas Hinzmann, James Dolen, Jane Nachtmann, Matthieu Marionneau

documentation / papers

- 8 TeV paper out !
 <u>https://arxiv.org/abs/1607.03663</u>
- o particle flow @ $8 \,\text{TeV}$ (with JME contributions) is imminent
- o in the pipeline with 36/fb
 - o jet energy corrections and performance
 - o MET performance
 - o 'pile-up' paper on Puppi vs. CHS
- o PASes/DPS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults/ME

Robert Schöfbeck

JME Workshop Helsinki 17/05/09

LHC schedule

5

new challenge: data and MC correlations

correlations and homogeneity

correlations and homogeneity

- o PU un-zerosuppression, shadowing
- σ small dependence on jet p_{T}
- o first subtraction based on simulation
- o scaled by data/MC ratio of RC offset energy density

- o subtract simulated PU
- o subtle nonlinear effects
 - o PU un-zerosuppression, shadowing
 - σ small dependence on jet p_{T}
 - o first subtraction based on simulation
 - o scaled by data/MC ratio of RC offset energy density

13

Applied to simulation —

- o subtract simulated PU
- o subtle nonlinear effects
 - o PU un-zerosuppression, shadowing
 - σ small dependence on jet p_{T}
 - o first subtraction based on simulation ,
 - o scaled by data/MC ratio of RC offset energy density

- response in simulation
 - o response jumps at the end of tracker coverage and HE/HF boundary can cause eta bias and bin migration
- o simulated resolution
 - o rather stable over run periods

15

0

20

100 200

10002000 p_et (GeV)

o rather stable over run periods

- response in simulation
 - o response jumps at the end of tracker coverage and HE/HF boundary can cause eta bias and bin migration
- o simulated resolution
 - o rather stable over run periods

Robert Schöfbeck

JME Workshop Helsinki 17/05/09

From the menu

pile-up

- o HBHE noise (RBX, HPD discharge, ion fb.)
- o Beam Halo, non instrumented regions
- o numerous new issues found
 - o ECAL gain switch at high energy
 - mismeasure a small fraction of high energy e/ $\!\gamma$
 - o tracking dynamic inefficiency
 - biases charged fraction
 - loosening tracking induced spurious muons

RBX noise

HPD discharge

E_T^{miss} and jet tails

21

- o very fast turn around in E_T^{miss} tails crucial for performance
- o all the know problems under control
 - o HBHE noise (RBX, HPD discharge, ion fb.)
 - o Beam Halo, non instrumented regions
- o numerous new issues found
 - o ECAL gain switch at high energy
 - mismeasure a small fraction of high energy e/ $\!\gamma$
 - o tracking dynamic inefficiency
 - biases charged fraction
 - loosening tracking induced spurious muons
- o highly efficient jet ID, clean E_T^{miss} tail
- o we succeeded to deliver high quality objects on an aggressive time scale

E_T^{miss} performance

Events / 5 GeV

10³

CMS

22

o directly benefited a wealth of results at ICHEP16 and Moriond17

Robert Schöfbeck

Offline Type1 E^{miss}₊ [GeV]

109

E_T^{miss} performance

CMS-PAS-JME-16-004

- o scale and resolution under control
- o battling PU: commission puppi
 - Define $\alpha_i = \log \sum_{\substack{j \in CR, PV \\ i \neq i}} \left(\frac{p_{Tj}}{\Delta R_{ij}} \right)^2 \Theta(R_0 \Delta R_{ij})$

which encodes the PU-probability of a particle

- distribution of α is *measured* using charged component in each event and *applied* to the neutrals. Extrapolate to outside of TRK.
- reweight neutrals according to PU probability

$$w_i \cdot (p_{\mathrm{T}i} > (A + B \cdot n_{PV}))$$

- Take care with isolated high p_T photons & leptons
- Makes optimal use of PF particle level
- o It pays off: global event interpretation with PU subtraction within reach!

E_T^{miss} performance

 $w_i \cdot (p_{\mathrm{T}i} > (A + B \cdot n_{PV}))$

o dynamic thresholds for neutrals are important tuning parameters

- effectively, a coarse model of neutral had. resolution vs. PU
- o can this be refined?
 - dominant systematic is unclustered energy
 - balance insensitivity wrt. PU vs. tails
 - should improve MET significance
- o revisit/refine CHS at high PU

CMS

25

q/g tagging likelihood

o simple log likelihood of ch. mult, **σ**₂, p_{T,D}

- o since a long time used in analysis
- Herwig++/Pythia8
 shower model differ
 for gluon jet
 properties
- reweighting in dijet/
 Z+jets CR reduces
 sys by a factor 10

PU Jet ID: BDT

CMS-PAS-JME-16-003

26

o NNs offer multi-classification o train g/uds/c/b/PU or W/Z/H/t ? Robert Schöfbeck

-udsg

0.9

machine learning

machine learning, biased view

- o multiclassification considered seriously
- o DeepTop: use jet images in deep NN o another example of raw input
- o real deal: stability wrt to experimental, NN Outpu modelling unc., Traditional NN dv. Trained NN PU etc. 0.6
- o adversarial NN: 0.5 0.4 decorrelate taggers 0.3 0.2E 0.1 o force flat efficiency
 - to reduce mass sculpting

o trade some performance for gain in stability

Shimmin et.al.

50

arXiv:1703.03507

100

150

200

decorrelated substructure

J.Dolen et.al., arXiv:1603.00027, CMS-PAS-EXO-16-030

o 2/1-subjettiness ratio excellent for finding 2-prong structure
 o some correlation with m_{sD},

remove with simple reparametrization

o shall be happy with simple, physics motivated trafo, if no MVA gain JME Workshop Helsinki 17/05/09

PUPPI softdrop jet mass (GeV)

tagging boosted W/Z

CMS-EXO-PAS-16-030

Resolution (GeV RS Graviton → WW, Anti-kT (R=0.8) o extensive MC studies of 50 PF <n_)>=40 PF + CHS p_ > 300 GeV ▲ fitted σ RMS groomers and PU mitigation PF + PUPPI |η| < 2.5 40 in Run-I, LSI and until now Trimming Soft Drop Pruning 30 o AK8 PF+CHS/Puppi jets and $SD(\beta = 0)$ (i.e. MMD) 20 with \mathbf{T}_{21} is CMS default 10 2.3 fb⁻¹ (13 TeV) 2.3 fb⁻¹ (13 TeV) Events / (5 GeV) 00 02 00 05 00 00 $5^{\pm 0} \cdot 2 \int_{DT}^{2} \int_{C_{T}}^{2} \int_{C_{T}}^{2} \cdot 2 \int_{DT}^{2} \cdot 2 \int_{DT}^{2$ CMS 180F tt (unmerged) CMS -+ CMS data tt (unmerged) CMS data Preliminary Data fit Single top Data fit Single top Preliminary 160 MC fit W+jets — MC fit W+jets and studied in data! 140 tt (merged) WW/WZ/ZZ WW/WZ/ZZ tt (merged) 120 o O(10%) SF measured 100 150 routinely 80 100 60 o factorized, universal 40 50 20 tools, e.g. H(bb) tagger 60 90 100 110 120 130 70 80 50 60 70 80 100 110 120 130

PUPPI softdrop jet mass (GeV)

tagging boosted W/Z

Soft Drop

Resolution (GeV RS Graviton → WW, Anti-kT (R=0.8) o extensive MC studies of 50 PF <n_{PII}>=40 PF + CHS p_ > 300 GeV ▲ fitted σ RMS groomers and PU mitigation PF + PUPPI |η| < 2.5 40 in Run-I, LSI and until now Trimming Pruning 30 o AK8 PF+CHS/Puppi jets and $SD(\beta = 0)$ (i.e. MMD) 20 with \mathbf{T}_{21} is CMS default 10 $X \rightarrow VH \rightarrow q\bar{q}bb$ 35.9 fb⁻¹ (13 TeV) Events 80 0 H(bb), m_x=1200 GeV H(bb), m_x=4000 GeV Sout = 0.2 pt = 0.1 pt = 0.2 pt = 0.3 pt = 0.1 for = 0.05 for = 0.5 for = 0.7 for = 0.7 for = 0.05 for = 0.7 for = 0.7 for = 0.05 for = 0.7 for = 0.7 for = 0.05 for = 0.05 for = 0.7 for Preliminarv 70

... and studied in data!

- \circ O(10%) SF measured routinely
- o factorized, universal tools, e.g. H(bb) tagger

CMS-PAS-B2G-17-002

60

40

20

20

40

60

80

100

120

140

160

soft drop jet mass (GeV)

180

200

tagging boosted W/Z

CMS-PAS-B2G-17-002

Resolution (GeV RS Graviton → WW, Anti-kT (R=0.8) o extensive MC studies of 50 PF <n_{PII}>=40 PF + CHS p_ > 300 GeV ▲ fitted σ RMS groomers and PU mitigation PF + PUPPI |η| < 2.5 40 in Run-I, LSI and until now Trimming Pruning Soft Drop 30 o AK8 PF+CHS/Puppi jets and $SD(\beta = 0)$ (i.e. MMD) 20 with \mathbf{T}_{21} is CMS default 10 $X \rightarrow VH \rightarrow q\overline{q}bb$ 35.9 fb⁻¹ (13 TeV) Events / 5.0 GeV 08 00 CMS 0 $\sum_{m_0=0,2}^{n_{m_0}=0,1} \sum_{p_T=0,2}^{n_{m_0}=0,2} \sum_{p_T=0,3}^{n_{m_0}=0,1} \sum_{p_T=0,1}^{n_{m_0}=0,0} \sum_{p_T=0,1}^{n_{m_0}=0,0} \sum_{p_T=0,1}^{n_{m_0}=0,0} \sum_{p_T=0,0}^{n_{m_0}=0,0} \sum_{p_T=0,0}^{n_$ H(bb), m_=1200 GeV ----- H(bb), m_=4000 GeV-Preliminary W(qq), m_=1200 GeV W(qq), m_=4000 GeV Z(qq), m,=1200 GeV ----- Z(qq), m,=4000 GeV

Ζ

: Higgs

VH resonance search

... and studied in data!

- \circ O(10%) SF measured routinely
- o factorized, universal tools, e.g. H(bb) tagger

boosted top tagging

CMS

o cut-based or in BDT. Stability vs PU, jet p_T , and subjet b-tag efficiency

how did we get here?

b) finely tuned local reconstruction

- o dedicated jet core tracking: recover soft tracks in dense cores
- o pixel cluster splitting: reconstruct overlapping tracks

CMS-PAS-JME-16-003, CMS-PAS-JME-14-002

how did we get here?

a) we can subtract PU locally

b) finely tuned local reconstruction

- o dedicated jet core tracking: recover soft tracks in dense cores
- o pixel cluster splitting: reconstruct overlapping tracks

CMS-PAS-JME-16-003, CMS-PAS-JME-14-002

precision devices

. PLATE.XIV -2 Fig. 12. Fig ... 2 Fig. 13 Fig. 3. .Fig. 14. .Fig.4. 0 Fig. 15. Fig. 16 Fig.8. Fig.g. Fig. 5. Fig.11 . Fig. 17 ... Fig.10. Fig.7

.. Herij Sculp

jet energy accuracy in Run-II

- o Run-I: min. 0.32% abs. scale uncertainty o Factor 10 more Z! \circ 0.1% at Run-II?!
- o Optimal calibration at working point o 200 GeV at **η**=0 and 20% gluons o then move away and control systematics

Robert Schöfbeck

low level systematics

Hybrid QIE Photodiode Digital Data q = Idt - ADCto Optical Fiber Scintillator Lavers Configuration Data Delay HCAL cell LHC raddam Clock

CMS

39

- o systematic in the raddam. peculiar pattern in jet response PU/eta/E/time
- parameterize response
 variation and constrain
 nuisance in JEC global fit
- need similar approach for other subdets

o both, HCal scintillators and HPDs degrade when irradiated

Jay Lawhorn, US LHC user mtg. 2016, CERN-CMS-DP-2016-052

o total raddam well understood

reference objects

CMS-SMP-14-007, arXiv:1502.02702

accuracy in balancing

o dijet balancing

- o global fit of MPF and p_T bal
- o improve lever arm by adding Z's between 30-70, include $|\dot{\eta}|$ > 1.3
- o properly parameterize uncertainties, constraints from PF composition?

- o extrapolation to zero extra activity
 - o single point from global fit now
 - \circ extend to p_T bins for each sample
 - o can narrow down to 10⁻³ level?
 - o jets beyond HF: gen comparisons, long. profiles

reducing flavor and PU offset

- 42
- o gluon fraction \sim 20% in both g+jet and Z+jet
 - o yet, need gluon scale for incl. jets and b-jet scale for top mass
- o gluon/quark response difference in dijets with q-tag?
- o Redo Z+b balancing: 0.4%/sqrt(10) ~ 0.12%
- o improve MC flavor response with DNN

- o Pile up offset
 - \circ origin jet p_T dependence unclear
 - o handle in data not easy
 - o need to break up by flavor
 - $\,\circ\,$ Z+jet balance vs. mu and N_{PV}
 - o UE studies in different samples

o It's not about m_t

o accurate jet energy calibration will benefit everything by making sure we walk the calibration ladder all the way *down*

o Let us

- o organize & benefit from ML developments
- o continue to move offline procedures to online
- o continue to monitor performance with a fast turnaround and fix the tails quickly

o I wish good luck and all the fun for Seema, Zeynep and the rest of the team! Robert Schöfbeck IME Workshop Helsinki 17/05/09

particle flow

I.Raw Detector Readout 2. Clustering and Tracking **HCAL HCAL ECAL ECAL** Tracker Tracke 4. Resolve, Identify, Measure 3. Cluster-Track Linking neutral hadron from energy imbalance electron charged hadron charged hadron charged Tracker-Calo Link hadron

Figure is stolen from somebody who stole it and didn't put a reference

Robert Schöfbeck

JME Workshop Helsinki 17/05/09

JEC uncertainties in 2015

46

- Pileup uncertainty dominant below 50 GeV
- JetFlavorQCD sizable uncertainty for inclusive jets, but smaller for other analyses
- Other important uncertainties: absolute scale within |η|<3 and relative scale at |η|>3
- Minimum uncertainty of ~0.7% at p_T=300 GeV and |η|<3

PU mitigation for jet mass

o Soft Drop/Modified Mass Drop

• jet is clustered with CA, then declustered and the softer of two jets is dropped if

Robert Schöfbeck

boosted top tagging

CMS

o cut-based or in BDT. Stability vs PU, jet p_T , and subjet b-tag efficiency

Robert Schöfbeck