Top Quark Mass

What It Is and How to Interpret Reconstruction Measurement ?

André H. Hoang

University of Vienna

Der Wissenschaftsfonds.

Outline

- Introduction
- Monte Carlo generators and the top quark mass
- Theory issues for the LHC
- Calibration of the Monte Carlo top mass parameter: $e^+e^- \rightarrow t \bar{t}$ (2-jettiness)

Butenschön, Dehnadi, Mateu, Preisser, Stewart, AH; PRL 117 (2016) 153

- Relation of Mt^{Pythia 8.2} and mt^{pole}
- Factorization for $pp \rightarrow t \bar{t}$ with and w/o jet grooming
- Studies for LHC top mass measurements with SoftDrop

Mantry, Pathak, Stewart, AH; to appear soon

Summary, future plans

Main Top Mass Measurements Methods

LHC+Tevatron: Direct Reconstruction

kinematic mass

Top Mass Measurements Methods

JetMET 100fb-1 Workshop, Helsinki, May 10-12, 2017

Monte-Carlo Event Generators

- 1) Matrix elements (LO/NLO)
- 2) Parton shower (LL)
- 3) Hadronization model
- Full simulation of all processes (all experimental aspects accessible)
- QCD-inspired: partly first principles QCD ⇔ partly model
- Description power of data better than intrinsic theory accuracy.
- Top quark in parton shower: treated like a real particle $(m_t^{MC} \approx m_t^{pole} + ?)$.
- Top quark in matrix elements: $m_t^{MC} = m_t^{pole}$

BUT: parton showers sum (real & virtual !) perturbative corrections only above the shower cut and not pickup any corrections from below.

Uncertainty (a): But how precise is modelling? -> Part of exp. Analyses Unvertainty (b): What is the meaning of MC QCD parameters? -> Calibration & Theory

Top Quark Mass

$$\begin{array}{c} \overbrace{\qquad} + \underbrace{\overbrace{\qquad} \Sigma, \overbrace{\qquad} } \\ m^{0} = \overline{m}(\mu) \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots \right] \\ \end{array} \\ \end{array} = p - m^{0} - \Sigma(p, m^{0}, \mu) \\ \Sigma(m^{0}, m^{0}, \mu) = m^{0} \left[\frac{\alpha_{s}}{\pi \epsilon} + \dots \right] + \underbrace{\Sigma^{\text{fin}}(m^{0}, m^{0}, \mu)} \\ \underset{\text{Like running "strong}}{\overset{\text{Like running "strong}}}$$

- $ightarrow \ \overline{m}(\mu)$ is pure UV-object without IR-sensitivity
- \rightarrow Useful scheme for $\mu > m$
- \rightarrow Far away from a kinematic mass of the quark

Pole scheme:
$$m^0 = m^{\text{pole}} \left[1 - \frac{\alpha_s}{\pi \epsilon} + \dots \right] - \Sigma^{\text{fin}}(m^{\text{pole}}, m^{\text{pole}}, \mu)$$

- \rightarrow Absorbes all self energy corrections into the mass parameter
- \rightarrow Close to the notion of the quark rest mass (kinematic mass)
- → Renormalon problem: infrared-sensitive contributions from < 1 GeV that cancel between self-energy and all other diagrams cannot cancel.</p>
- \rightarrow Has perturbative instabilities due to sensitivity to momenta < 1 GeV (Λ_{QCD})

Should not be used if uncertainties are below 1 GeV !

coupling"

Heavy Quark Mass

$$= p - m^{0} - \Sigma(p, m^{0}, \mu)$$

$$= p - m^{0} - \Sigma(p, m^{0}, \mu)$$

$$\Sigma(m^{0}, m^{0}, \mu) = m^{0} \left[\frac{\alpha_{s}}{\pi \epsilon} + \dots \right] + \Sigma^{\text{fin}}(m^{0}, m^{0}, \mu)$$

$$\overline{\text{MS scheme:}} \quad m^{0} = \overline{m}(\mu) \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots \right]$$

$$Pole \text{ scheme:} \quad m^{0} = m^{\text{pole}} \left[1 - \frac{\alpha_{s}}{\pi \epsilon} + \dots \right] - \Sigma^{\text{fin}}(m^{\text{pole}}, m^{\text{pole}}, \mu)$$

$$\overline{\text{MSR scheme:}} \quad m^{\text{MSR}}(R) = m^{\text{pole}} - \Sigma^{\text{fin}}(R, R, \mu)$$

$$Jain, \text{Lepenik, Mateu, Preisser, Scimeni, Stewart, AHH arXiv:1704.01580}$$

$$Jain, \text{AH, Scimeni, Stewart (2008)}$$

- Like pole mass, but self-energy correction from <R are not absorbed into mass
- \rightarrow Interpolates between MSbar and pole mass scheme

 $m_t^{\text{MSR}}(R=0) = m^{\text{pole}}$ $m_t^{\text{MSR}}(R=\overline{m}(\overline{m})) = \overline{m}(\overline{m})$

- \rightarrow More stable in perturbation theory.
- $\rightarrow m_t^{MSR}(R = 1 \,\text{GeV})$ close to the notion of a kinematic mass, but without renormalon problem.

MC Top Quark Mass (for reconstruction)

$$m_t^{MC} = m_t^{MSR}(R = 1 \text{ GeV}) + \Delta_{t,MC}(R = 1 \text{ GeV})$$
 • small size of $\Delta_{t,MC}$

 $\Delta_{t,\mathrm{MC}}(1 \text{ GeV}) \sim \mathcal{O}(1 \text{ GeV})$

Renormalon-free

 little parametric dependence on other parameters

Stewart, AHH, 2008 AHH, 2014

$\frac{\text{MSR N}}{\text{MS Scheme:}} \qquad (\mu > \overline{m}(\overline{m}))$	Mass Definition	Jain, Lepenik, Mateu, Preisser, Scimemi, Stewart, AHH arXiv:1704.01580
$\overline{m}(\overline{m}) - m^{\text{pole}} = -\overline{m}(\overline{m}) \left[0.42 \right]$	$2441\alpha_s(\overline{m}) + 0.8345\alpha_s^2(\overline{m})$	$(\overline{i}) + 2.368 \alpha_s^3(\overline{m}) + \ldots]$
$\underline{MSR Scheme:} (R < \overline{m}(\overline{m}))$		
$m_{\rm MSR}(R) - m^{\rm pole} = -R \left[0.42 \right]$	$2441\alpha_s(R) + 0.8345\alpha_s^2(R)$	$(2) + 2.368 \alpha_s^3(R) + \ldots]$
$m_{\rm MSR}(m_{\rm MSR}) = \overline{m}(\overline{m})$		
$\implies m_{\rm MSR}(R)$ Short-distance	mass that smoothly interpola	ites all R scales

= "pole mass subtraction for momentum scales larger than R"

• Precision in relation to any other short-distance mass: $\leq 20 \text{ MeV} \textcircled{0} O(\alpha_S^4)$

"Ultimate" Precision of the Pole Mass

Beneke, Marguard, Nason, Steinhauser Answer: $\Delta m_t^{\text{pole}} = 70 \text{ MeV}$ arXiv:1605.03609 $m_t^{\text{pole}} - m_t^{\text{nMSR}}(163 \,\text{GeV}) = 7.505 + 1.581 + 0.481 + 0.193$ $+ 0.111 + 0.079 + 0.066 + 0.064 + 0.071 + \dots \text{GeV}$ region of constant correction Size of minimal term: 64 MeV BUT: Lepenik, Preisser, AHH, to appear $m_t^{\text{nMSR}}(2 \,\text{GeV}) - m_t^{\text{nMSR}}(163 \,\text{GeV}) = 9.838 + 0.623 + 0.072 - 0.026$ +0.025 GeV $m_t^{\text{pole}} - m_t^{\text{nMSR}}(2 \,\text{GeV}) = 0.246 + 0.139 + 0.113 + 0.122$ $+ 0.187 + 0.353 + 0.791 + 2.053 + 6.053 + \dots \text{GeV}$ Size of minimal term: 122 MeV

• Approach-independent ambiguity estimate

niversitat

• Bottom and charm mass effects: heavy quark symmetry ($\Delta m_t^{\text{pole}} = \Delta m_c^{\text{pole}}$) (increases IR sensitivity)

Calibration of the MC Top Mass

Method:

- Strongly mass-sensitive hadron level observable (as closely as possible related to reconstructed invariant mass distribution !)
- ✓ 2) Accurate <u>hadron level</u> QCD predictions at \ge NLL/NLO with full control over the quark mass scheme dependence.
- \checkmark 3) QCD masses as function of m_t^{MC} from fits of observable.
 - 4) Cross check observable independence / universality

$$m_t^{\text{MC}} = m_t^{\text{MSR}}(R = 1 \text{ GeV}) + \Delta_{t,\text{MC}}(R = 1 \text{ GeV})$$

$$\Delta_{t,\text{MC}}(1 \text{ GeV}) = \overline{\Delta} + \delta \Delta_{\text{MC}} + \delta \Delta_{\text{pQCD}} + \delta \Delta_{\text{param}}$$
Experimental
systematics Carlo dependence:
$$\begin{array}{c} \text{OCD errors:} \\ \text{OCD errors:} \\ \text{odifferent tunings} \\ \text{parton showers} \\ \text{color reconnection} \\ \text{Intrinsic error, ...} \end{array}$$

$$\begin{array}{c} \text{perturbative error} \\ \text{scale uncertainties} \\ \text{electroweak effects} \\ \text{odifferent} \\ \text{matrix} \\$$

S

Boosted Top Quarks

<u>First simplification:</u> $Q = 2p_T \ll m_t$

• Enables us to be inclusive w.r. to the hard-collinear decay products

- Top mass from reconstruction of boosted tops consistent with low p_T results.
- More precise studies possible with more statistics from Run-2.
- Meaning of m_t^{MC} for boosted tops and slow top quarks consistent.

Theory Issues for $pp \rightarrow t \, \overline{t} \, X$

- jet observable
- suitable top mass for jets
- initial state radiation
- final state radiation
- underlying event
- color reconnection
- beam remnant
- parton distributions
- sum large logs $Q \gg m_t \gg \Gamma_t$

Theory Issues for $pp \rightarrow t \,\overline{t} \, X$

- jet observable $\star\star$
- suitable top mass for jets \star
- initial state radiation
- final state radiation \star
- underlying event
- color reconnection $(\star) \leftarrow$
- beam remnant
- parton distributions
- sum large logs $Q \gg m_t \gg \Gamma_t$ \bigstar

First $e^+e^- \rightarrow t\bar{t}X$ and the issues \bigstar

Only final-final state color reconnection

Thrust Distribution

Observable: 2-jettiness in e+e- for $Q = 2p_T \gg m_t$ (boosted tops)

$$\tau = 1 - \max_{\vec{n}} \frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{Q}$$
$$\tau_2 \rightarrow \text{peak} \approx \frac{M_1^2 + M_2^2}{Q^2}$$

Invariant mass distribution in the resonance region of wide hemisphere jets !

$$rac{\mathrm{d}\sigma}{\mathrm{d} au} = \mathcal{Q}^2 \sigma_0 \mathcal{H}_0(\mathcal{Q},\mu) \int \mathcal{d}\ell \; J_0(\mathcal{Q}\ell,\mu) \, \mathcal{S}_0\left(\mathcal{Q} au-\ell,\mu
ight)$$

0.1

0.0

Excellent mass sensitivity:

$$\tau_2^{\rm peak} \, = \, 1 - \sqrt{1 - \frac{4m_t^2}{Q^2}}$$

0.3

0.4

0.2

τ2

Factorization: EFT Treatment

Boosted top jets

[Fleming, Hoang, Mantry, Stewart 2007]

 $n_f = n_\ell + 1$

$$\frac{\mathrm{d}\sigma^{\mathrm{bHQET}}}{\mathrm{d}\tau} = QH(Q, m, \mu_H)U_H^{(n_f)}(Q, \mu_H, \mu_m)H_m^{(n_f)}(Q, \mu_m)U_m^{(n_l)}(Q, m, \mu_m, \mu_B)$$

$$\times \int \mathrm{d}s \,\mathrm{d}\ell \, B_e^{(n_l)}(s, m, \mu_B)U_S^{(n_l)}(\ell, \mu_B, \mu_S)S_e^{(n_l)}(Q(\tau - \tau_{\min}) - \frac{s}{Q} - \ell, \mu_S)$$

$$\mu_H$$

$$\mu_B$$

$$\mu_B$$

$$\mu_G$$

$$\Lambda_{\mathrm{QCD}}$$

Factorization: EFT Treatment

Developments:

VFNS for final state jets (with massive quarks)

[Gritschacher, Hoang, Jemos, Mateu, Pietrulewicz '13 '14] [Butenschön, Dehnadi, Hoang, Mateu '16 (to appear)]

 Non-perturbative power-corrections are included via a shape function

[Korchemsky, Sterman 1999] [Hoang, Stewart 2007] [Ligeti, Stewart, Tackmann 2008]

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \frac{\mathrm{d}\sigma^{\mathrm{part}}}{\mathrm{d}\tau} \otimes F_{\mathrm{mod}}(\Omega_1, \Omega_2, \ldots)$

Gap-scheme

MSR mass & R-evolution

[Hoang, Jain, Scimemi, Stewart 2010] Jain, Lepenik, Mateu, Preisser, Scimemi, Stewart, AHH :1704.01580

- NNLL + NLO + non-singular
 - + hadronization
 - + renormalon-subtraction
 - + top quark decay
- Good convergence
- Reduction of scale variation (NLL vs. NNLL)

Why the Observed Pole is not at the Pole Mass

JetMET 100fb-1 Workshop, Helsinki, May 10-12, 2017

Why the Observed Pole is not at the Pole Mass

Is the pole mass determining the top single particle pole?

2-Jettiness for Top Production (QCD)

Signal ttbar vs full $ee \rightarrow WWbb$

MadGraph 5 study:

- Non-resonant contributions are irrelevant for τ_2 distribution
 - PYTHIA (or similar MCs) will give a good description of the production process at LO
 - hemisphere invariant mass ~ top invariant mass (no pollution from background)

JetMET 100fb-1 Workshop, Helsinki, May 10-12, 2017

Pythia Study: Hemisphere Mass Cuts

- In our theory description we treat the top decay as inclusive w.r.t. hemisphere
 - violated by decay products which cross to the other hemisphere
 - no differential impact in resonance region (irrelevant when normalized to signal region)

Cuts on hemisphere invariant mass above and below:

$$M_i^{\text{cut}} = m_t^{\text{MC}} \pm \Delta^{\text{cut}}$$

Fit Procedure Details

- $\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = f(\mathbf{m}_t^{\mathrm{MSR}}, \alpha_s(m_Z), \Omega_1, \Omega_2, \dots, \mu_H, \mu_J, \mu_S, \mu_M, R, \Gamma_t)$ any scheme non-perturbative renorm. scales finite lifetime
- Generating PYTHIA Samples: (PYTHIA 8.205) at different energies: Q = 600, 700, 800, ..., 1400 GeV
 - masses: $m_t^{\text{MC}} = 170, 171, 172, 173, 174, 175 \text{ GeV}$
 - width: $\Gamma_t = 1.4$ GeV
 - Statistics: 10⁷ events for each set of parameters

Tune 7 (Monash)

• Feed MC data into Fitting Procedure: all ingredients are there

Fit parameters: m_t^{MSR} , $\alpha_s(m_Z)$, $\Omega_1, \Omega_2, \ldots$ Take $\alpha_s(M_Z)$ as input from world average.

- (Sensitivity to strong coupling very weak.)
- **•** standard fit based on χ^2 minimization
- \blacktriangleright analysis with 500 sets of profiles (τ_2 dependent renorm. scales) for the each MC sample
- different Q-sets: 7 sets with energies between 600 1400 GeV 21 fit setups different n-sets: 3 choices for fitranges - (xx/yy)% of maximum peak height

Fit Result: Pythia 8.205 vs. Theory

 Γ_t =1.4 GeV, tune 7, m_t^{MC} = 173 GeV

 $\Omega_1 = 0.44 \text{ GeV},$ m_t^{MSR}(1GeV) = 172.81 GeV

- Good agreement of PYTHIA with NNLL/NLO theory predictions
- Perturbative uncertainties of theory predictions based on scale uncertainties (profiles)
- MC uncertainties:
 - Vertical: rescaled statistical error (PDF rescaling method) → independent on statistics
 - Horizontal: fit coverage from 21 fit setups (incompatiblity uncertainty)

Convergence & Stability: MSR vs. Pole Mass

500 profiles; $\alpha_s = .118$; $\Gamma_t = 1.4$ GeV; tune 7; Q = 700, 1000, 1400 GeV; peak(60/80)%

Input: $m_t^{\text{MC}} = 173 \text{ GeV}$

fit to find $m_t^{\rm MSR}(1{\rm GeV})$ or $m_t^{\rm pole}$

- Good convergence & stability for MSR mass
- Mass m_t^{MSR}(1GeV) mass definition closest to the MC top mass m_t^{MC}.
- Pole mass shows worse convergence.
- Pole mass not compatible with MC mass within errors
- 1100/700 MeV difference at NLL/NNLL
- $m_t^{\text{pole}} \neq M_t^{\text{Pythia 8.2}}$

Similar analyses from the 20 other Q-set and n-range setups.

JetMET 100fb-1 Workshop, Helsinki, May 10-12, 2017

MSR/MS Parametric Dependence on α_S

500 profiles; $\Gamma_t = 1.4,-1$ GeV;tune 7; diff. Q-sets; peak(60/80)%

 $m_t^{\mathrm{PYTHIA}} = 173~\mathrm{GeV}$

- α_s dependence: $m^{\text{scheme}}[\alpha_s] - m^{\text{scheme}}[.118]$
- small dependence of MSR mass on α_s ~ 50 MeV error ($\delta \alpha_s = .002$)
- large sensitivity of $\overline{\mathrm{MS}}$ mass on $lpha_s$
- not an error: calculated from MSR

MSR Mass Tune Dependence

500 profiles; $\Gamma_t = 1.4,-1$ GeV;tune 1, 3, 7; diff. Q-sets; peak(60/80)%

 $m_t^{\rm PYTHIA} = 173~{\rm GeV}$

- tune dependence: $m^{MSR}[tune] - m^{MSR}[7]$
- clear sensitivity to tune
- m^{MC} will depend on tune
- tune dependence is not a calibration uncertainty:

(different tune \Rightarrow different MC $\Rightarrow m_t^{MC}$)

Final Result for m_t^{MSR}(1 GeV)

- All investigated MC top mass values show consistent picture
- MC top quark mass is indeed closely related to MSR mass

within uncertainties: $m_t^{\text{MC}} \simeq m_t^{\text{MSR}} (1 \text{GeV})$

							····		1					
		n	$n_t^{MC} = 1$	$73\mathrm{GeV}$ ($\tau_2^{e^+e^-})$		ļ							
mass	s o	order	$\operatorname{central}$	perturb.	incompatibility	total	170							
$m_{t,1}^{\text{MS}}$	$_{\rm GeV}^{\rm SR}$ N	NLL	172.80	0.26	0.14	0.29		<u>/</u>		1				
$m_{t,1}^{\text{MS}}$	$_{\rm GeV}^{\rm SR}$ N	$N^{2}LL$	172.82	0.19	0.11	0.22	• • E	(~	MSR	$(1 C_{c})$	\mathbf{V}	M		\mathbf{v}
m_t^{pol}	le N	NLL	172.10	0.34	0.16	0.38	0.2		n_t	(1 Ge	ev) —	m_t	ЛG	evj
m_t^{pol}	le N	$N^{2}LL$	172.43	0.18	0.22	0.28	0.0		<u></u>				[
↓ Spread of results from 21 fit setups				-0.2 -0.4										
$\Omega_1^{\rm PY} = 0.41 \pm 0.07 \pm 0.02 {\rm GeV}$ at NLL						170	171	17	2 1	73 1	$\frac{174}{m_t^{MC}}$	17 [GeV		
Ω_1^{PY}	= 0.42	2 ± 0.0	07 ± 0.03	3 GeV at	$N^{2}LL$								U	

niversität wien

Pole Mass Determination

1) Pole mass implemented in code:

- Calibration in terms of the pole mass involves large higher-order perturbative corrections
- Additional uncertainty on pole mass: $(m_t^{pole})_{NLL} = 172.45 \pm 0.52 \text{ GeV},$ (added quadratically) $(m_t^{pole})_{NNLL} = 172.72 \pm 0.41 \text{ GeV}$

Result for the Top Msbar Mass

Theory Issues for $pp \rightarrow t \,\overline{t} \, X$

- jet observable $\star\star$
- suitable top mass for jets \star
- initial state radiation
- final state radiation \star
- underlying event
- color reconnection \star
- beam remnant
- parton distributions
- sum large logs $Q \gg m_t \gg \Gamma_t$ \bigstar

Can apply this to current measurements if we trust Pythia extrapolation for remaining items

Theory Issues for $pp \rightarrow t \, \overline{t} \, X$

- suitable top mass for jets \star
- initial state radiation \star
- final state radiation \star
- underlying event
- color reconnection \star
- beam remnant 🛧 Jet veto
- parton distributions 🛧 multiple channels
- sum large logs $Q \gg m_t \gg \Gamma_t \quad \bigstar$

Better: factorization for pp

Note: no star here

Jet Mass of Boosted Top Quarks

http://arxiv.org/abs/1703.06330

Top mass from boosted jet mass

Cambridge-Aachen jet with distance parameter R = 1.2, and $p_{\rm T} >$ 400 GeV.

Theory Issues for $pp \rightarrow t \, \overline{t} \, X$

Extension to pp straightforward: (e.g. N-jettiness & X-Cone jets)

JetMET 100fb-1 Workshop, Helsinki, May 10-12, 2017

Theory Issues for $pp \rightarrow t \, \overline{t} \, X$

Extension to pp straightforward: (e.g. N-jettiness & X-Cone jets)

$$\frac{d^2\sigma}{dM_{J1}^2 dM_{J2}^2 d\mathcal{T}^{\text{cut}}} = \text{tr} \Big[\hat{H}_{Qm} \hat{S}(\mathcal{T}^{\text{cut}}, R, \ldots) \langle F \rangle \otimes J_B \otimes J_B \otimes \mathcal{II} \otimes ff \Big]$$

Issue is that UE / MPI is significant:

Same jet functions as e⁺e⁻

BUT control of **Underlying Event** is model dependent.

Same model used for Hadronization can describe UE by (primarily) tuning one parameter Ω.

$$\mathbf{\Omega} = \int \mathrm{d}k \, k \, F(k)$$

Stewart, Tackmann, Waalewijn, 2015

Grooming with SoftDrop

Grooms soft radiation from the jet

 $\frac{\min(p_{Ti}, p_{Tj})}{p_{Ti} + p_{Tj}} > z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R_0}\right)^{\beta}$

Larkowski, Marzani, Soyez, Thaler, 2014

$$z > z_{
m cut} \; \theta^{eta}$$

two grooming parameters

universität wien

JetMET 100fb-1 Workshop, Helsinki, May 10-12, 2017

Theory Set Up with SoftDrop

AH, Mantry, Pathak, Stewart; to appear

 $p_T \gg m_t \gg \Gamma_t > \Lambda_{\rm QCD}$

- **Boosted Tops** $p_T \gg m_t$ retain top decay products
- Fat Jets

$$R \gg \frac{m_t}{p_T}$$

Sensitivity $\hat{s} \sim \Gamma_t$ for measurement of jet-mass m_J $\hat{s} = \frac{m_J^2 - m_t^2}{m_J^2 - m_t^2}$ 0.012

• Grooming
$$z_{ ext{cut}},eta$$

Jet Veto

(Perturbative and Nonperturbative effects give $\Gamma > \Gamma_t$)

Theory Set Up with SoftDrop

AH, Mantry, Pathak, Stewart; to appear

Can only apply a "light soft drop" for tops:

Factorization with Soft Drop on one jet:

$$\begin{aligned} \frac{d^2\sigma}{dM_J^2 d\mathcal{T}^{\text{cut}}} &= \text{tr} \big[\hat{H}_{Qm} \hat{S}(\mathcal{T}^{\text{cut}}, Qz_{\text{cut}}, \beta, \ldots) \otimes F \big] \otimes J_B \otimes \mathcal{II} \otimes ff \\ & \times \Big\{ \int d\ell dk \, J_B \Big(\hat{s}_t - \frac{Q\ell}{m}, \Gamma_t, \delta m \Big) S_C \Big[-\ell, k, m, Q, z_{\text{cut}}, \beta - \Big] F_C(k) \Big\} \end{aligned}$$

z_{cut} dependence

JetMET 100fb-1 Workshop, Helsinki, May 10-12, 2017

Predict independent of cutoff on radiation outside the jet ("jet veto"):

JetMET 100fb-1 Workshop, Helsinki, May 10-12, 2017

Soft Drop prediction: Same Result for e^+e^- and pp collisions

Pythia Simulation vs. Theory (with Soft Drop)

 $m_t^{\text{pole}} = 171.8 \text{ GeV}$

without contamination:

 $m_t^{\rm MC} = 173.1 \; {\rm GeV}$

Pythia Simulation vs. Theory (with Soft Drop)

Summary

 First systematic MC top quark mass calibration based on e⁺e⁻ 2-jettiness (large p_T): related to observables dominating the reconstruction method

▶ m_t^{Pythia8.2} = 173 GeV

- m_t^{MSR}(1GeV) = 172.82 ± 0.22 GeV
 (m_t^{pole})_{NLO} = 172.71 ± 0.41 GeV
- NNLL+NLO QCD calculations based on an extension of the SCET approach concerning massive quark effects (all large logs incl. Ln(m)'s summed systematically) describing boosted top quarks.

Future: consolidation & extension to pp collisions & MC studies

- Extension to pp collisions looks very promising with SoftDrop grooming to suppress MPI effects (boosted top quarks essential as well).
- Provides new ways to test and improve MC event generators.
- Plans: Public code for calibration (CALIPER)
 - Other e⁺e⁻ eventshapes (C-parameter, HJM)
 - NNNLL for e⁺e-
 - pp with SoftDrop (at NNLL)
 - Electroweak corrections
- Theory of the MC top quark mass: parton shower, hadronization model, NLO matching

Backup Slides

JetMET 100fb-1 Workshop, Helsinki, May 10-12, 2017

Peak Fits Parameter Sensitivity

Default renormalization scales; Γ_t =1.4 GeV, tune 7, $\Omega_{1,smear}$ =2.5 GeV, m_t^{Pythia} =171 GeV, Q={700, 1000, 1400} GeV, peak fit (60/80)%

 $\longrightarrow \chi^2_{\min} \sim O(100)$

- Very strong sensitivity to m_t
- Low sensitivity to strong coupling
- Take PDF strong coupling as input: $\alpha_{S}(M_{Z}) = 0.1181(13)$ (error irrelevant for m_{t}^{MSR} , m_{t}^{pole})
- χ^2_{min} and δm_t^{stat} do not have any physical meaning
- PDF rescaling method: $(\chi^2_{min})^{rescale} = 1$

can be used to define an incompatibility uncertainty

Top Mass Reconstruction Error Budget

	$m_{\rm t}$ fit type					
Lepton+jets channel	2D		1D	hybrid		
	$\delta m_{\rm t}^{\rm 2D}({ m GeV})$	δJSF	$\delta m_{\rm t}^{\rm 1D}({ m GeV})$	$\delta m_{\rm t}^{\rm hyb} ({\rm GeV})$		
Experimental uncertainties						
Method calibration	0.04	0.001	0.04	0.04		
Jet energy corrections						
– JEC: Intercalibration	< 0.01	< 0.001	+0.02	+0.01		
 – JEC: In situ calibration 	-0.01	+0.003	+0.24	+0.12		
- JEC: Uncorrelated non-pileup	+0.09	-0.004	-0.26	-0.10		
- JEC: Uncorrelated pileup	+0.06	-0.002 -0.		-0.04		
Lepton energy scale	+0.01	< 0.001	+0.01	+0.01		
$E_{\rm T}^{\rm miss}$ scale	+0.04	< 0.001	+0.03	+0.04		
Jet energy resolution	-0.11	+0.002	+0.05	-0.03		
b tagging	+0.06	< 0.001	+0.04	+0.06		
Pileup	-0.12	+0.002	+0.05	-0.04		
Backgrounds	+0.05	< 0.001	+0.01	+0.03		
Modeling of hadronization						
JEC: Flavor-dependent						
– light quarks (u d s)	+0.11	-0.002	-0.02	+0.05		
– charm	+0.03	< 0.001	-0.01	+0.01		
– bottom	-0.32	<0.001	-0.31	-0.32		
– gluon	-0.22	+0.003	+0.05	-0.08		
b jet modeling						
 b fragmentation 	+0.06	-0.001	-0.06	<0.01		
– Semileptonic b hadron decays	-0.16	<0.001	-0.15	-0.16		
Modeling of perturbative QCD						
PDF	0.09	0.001	0.06	0.04		
Ren. and fact. scales	$+0.17\pm0.08$	-0.004 ± 0.001	-0.24 ± 0.06	-0.09 ± 0.07		
ME-PS matching threshold	$+0.11\pm0.09$	-0.002 ± 0.001	-0.07 ± 0.06	$+0.03\pm0.07$		
ME generator	-0.07 ± 0.11	-0.001 ± 0.001	-0.16 ± 0.07	-0.12 ± 0.08		
Top quark <i>p</i> _T	+0.16	-0.003	-0.11	+0.02		
Modeling of soft QCD						
Underlying event	$+0.15\pm0.15$	-0.002 ± 0.001	$+0.07\pm0.09$	$+0.08\pm0.11$		
Color reconnection modeling	$+0.11\pm0.13$	-0.002 ± 0.001	-0.09 ± 0.08	$+0.01\pm0.09$		
Total systematic	0.59	0.007	0.62	0.48		
Statistical	0.20	0.002	0.12	0.16		
Total	0.62	0.007	0.63	0.51		

 $m_t^{\text{MC}} = 172.44 \pm 0.49$ (CMS Run-1 final, 2015) arXiv:1509.04044

A NLO ME corrections

MSR Mass Definition

AH, Stewart: arXive:0808.0222 $m_t^{\text{MC}} = m_t^{\text{MSR}}(3^{+6}_{-2} \text{ GeV}) = m_t^{\text{MSR}}(3 \text{ GeV})^{+0.6}_{-0.3}$ 180 $\overline{m}(\overline{m})$ Tevatron Good choice for R: 170 Of order of the typical scale of the observable used to m(R)measure the top mass. 1S, PS,... 160 masses R=m(R)150 50 100 150 0 R Peak of Total cross section, invariant mass e.w.precsion obs., distribution, endpoints Unification, MSbar mass Top-antitop 18 18 18 19 19 19 19 08 08 06 04 02 threshold at the ILC

Masses Loop-Theorists Like to use

