

WP12 Crab Cavities preliminary layout study

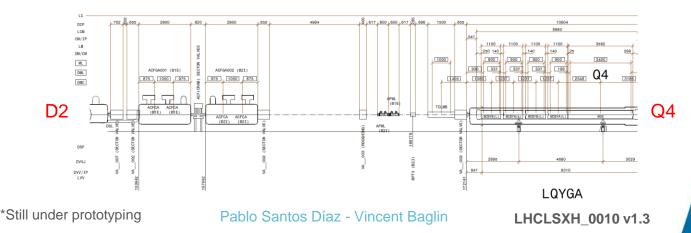
Pablo Santos Díaz – Vincent Baglin

WP12 crab cavities preliminary layout study CERN Geneva / 11-11-2016

OUTLINE

- 1. Introduction.
- 2. Crab cavities.
- **3.** Vacuum layout proposal.
- 4. Conclusions & next steps.

1. Introduction

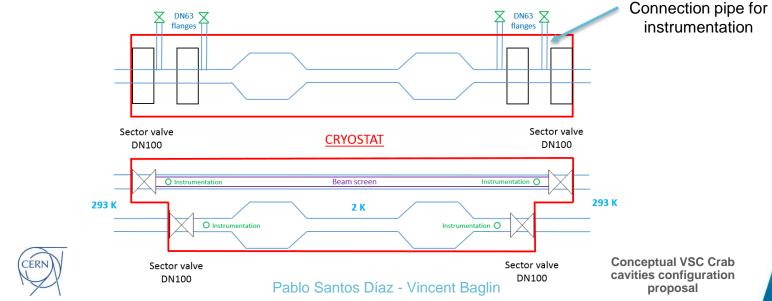


Motivation & inputs

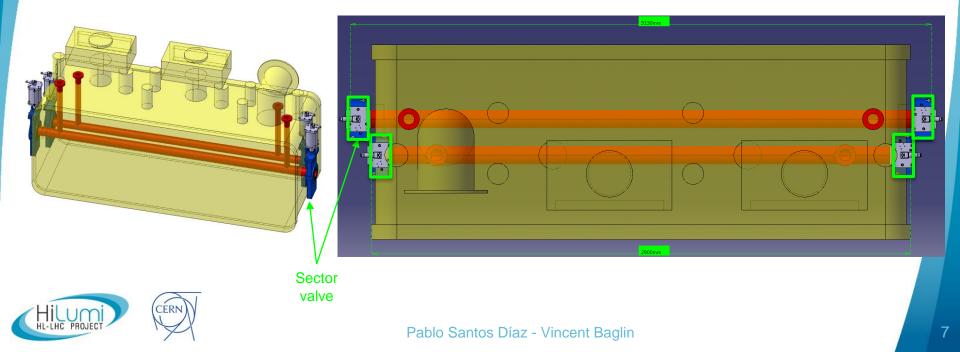
The crab cavities mock-up and the vacuum layout between D2 and Q4 must be defined and set.

The inputs used in this study are the following:

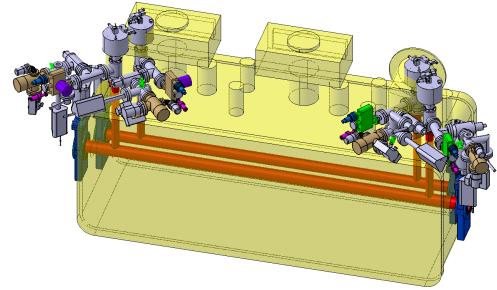
- HL-LHC LSS R5 layout: LHCLSXH_0010 v1.3.
 - Courtesy of Blanca Vazquez De Prada & Ignacio Zurbano Fernandez (28/10/2016).
- Beam aperture between D2 and Q4: ID91 mechanical aperture in room temperature beam pipe and ID84 in cryomodule.
 - Courtesy of Riccardo de Maria (21/04/2016) and Rama Calaga.
- "HL-LHC layout update and ongoing optics work" presented in 16th HiLumi TCC Meeting.
 - Courtesy of Riccardo de Maria (22/09/2016).
- HL-LHC Crab Cavities mock-up: ST0782198_01*.
 - Courtesy of Teddy Capelli (23/06/2015).


4

2. Crab cavities cryomodule


VSC specifications

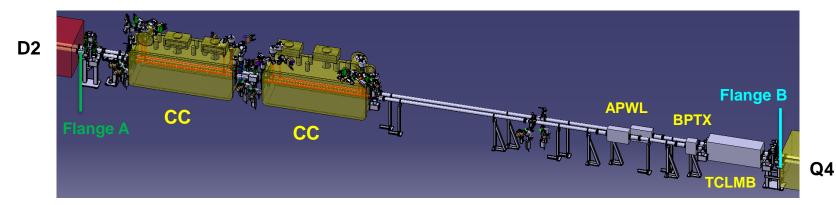
- In order to guarantee vacuum stability, the non-crabbed vacuum chamber, operating at 2K, needs to be designed with a
 perforated beam screen type system operating at 5-20K.
- To separate room temperature from cold temperature pipes, 4 Sector valves DN100 in each crab module are required. They will allow conditioning of the cryomodules at the surface.
- The 4 sector valves are interlocked to the beam
- Two connection pipes per beam line are required in the cryomodule to provide the required vacuum instrumentation.


Cryomodule envelope

- The cryomodule sector valves must be staggered due to the 194 mm beam separation. So, there is different cryomodule envelope length for crabbed and non-crabbed beams.
 - The estimated length for the non-crabbed sector inside CC cryomodule is 3130 mm \rightarrow tbc with WP4.

Cryomodule with VCS instrumentation

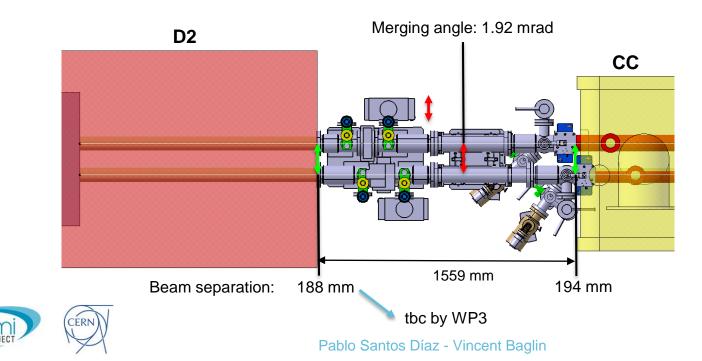
- Adding the required vacuum instrumentation ...
 - many interferences with the present crab envelope appears !
 - \rightarrow crab cavities mock-up should be defined taking into account VSC equipment
 - \rightarrow iterations with WP4 are needed



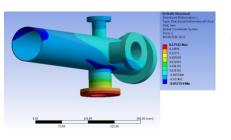
Cryomodules integration study for the DQW (left) and RFD (right) cavities with VC ID 91 mm

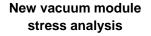
3. Vacuum layout proposal

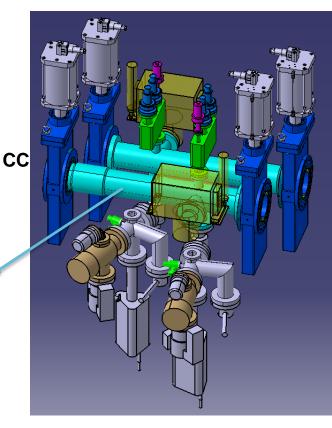
Vacuum layout proposal between D2-Q4



- 3 double room temperature sectors bakeable, **NEG coated**.
- 2 sectorized CC modules: unbaked and operating at cryogenic temperature.
- 3 types of sector valves assemblies (VAB).
- Since the mechanical aperture is 91 mm, DN100 flanges are required.
- The beam separation at the flange A is 188 mm and at flange B is 194 mm (to be confirmed by WP3).
 - There must be a mechanical merging angle between these flanges.

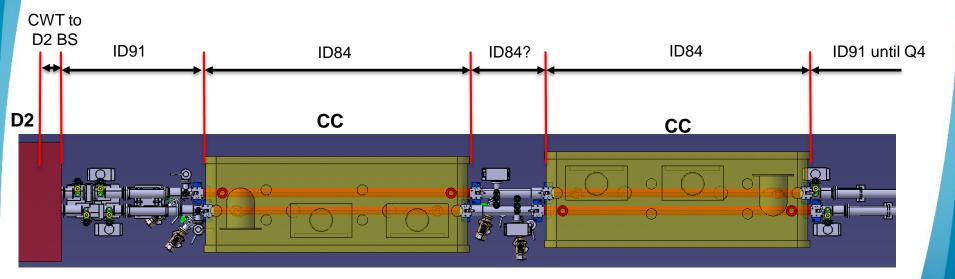

New VAB next to D2 with merging angle


- Due to the difference between the beam separation in D2 (188 mm) and in CC (194 mm), there must be a mechanical merging angle between D2 flange and CC flange.
 - \rightarrow a special VAB configuration needs to be studied.



New VAB between crab cavities

- A special vacuum module must be designed with the following specifications:
 - Installed vacuum module length equal to 725 mm.
 - Enough strength to support all the instrumentation required in a vacuum sector.
 - The vacuum module must be bakeable up to 250 °C.
 - Flanges DN100.
 - NEG coated.



Mechanical aperture between D2 and Q4

- There are different mechanical apertures between D2 and Q4.
 - \rightarrow They must be studied in detail to define the positions of the ID transitions.

4. Conclusions & next steps

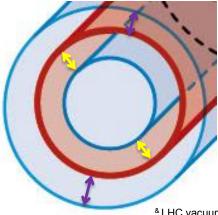
Conclusions

- A vacuum layout between D2 and Q4 is under study
- This layout includes VSC specifications. → to be validated by WP4 and WP15.
- The studied layout includes:
 - 3 double room temperature sectors bakeable and NEG coated.
 - 3 types of sector valves assemblies (VAB).
 - Flanges DN100 for the connections among equipment.
 - 2 double vacuum sectors per CC module: unbaked and operating at cryogenic temperature.
 - VCS crab cavities specifications:
 - Non-crabbed vacuum chamber with perforated beam screen type system.
 - 4 Sector valves DN100 per CC module.
 - Two connections pipes per beam line per CC module for vacuum instrumentation.
- New VAB next to D2 must have a merging angle.
- There are different mechanical apertures between D2 and Q4 which needs to be defined.

Next steps

- HL-LHC crab cavities module envelope needs to be validated by WP4.
- VSC specifications need to be implemented in the CC module.
- The VAB next to D2 needs to be studied and defined.
- The different mechanical apertures along the layout needs to be studied and defined.

. . .



THANK YOU FOR YOUR ATTENTION!!!

Minimum ID of HL-LHC VAC components for 85 mm beam aperture

- Inputs:
 - Beam aperture: 85 mm.
- It must be set to compute the minimum ID:
 - Pipe mechanical tolerance[&].
 - Pipe alignment tolerance*.

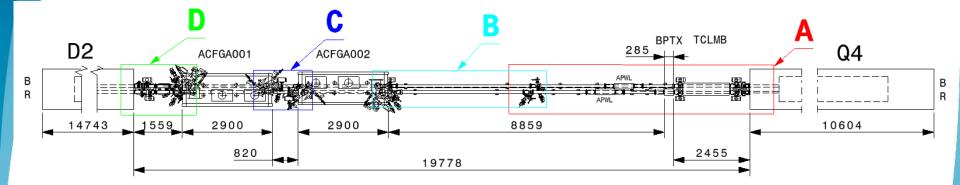
	Vacuum chamber dimensions		
	Beam Aperture	85	[mm]
):	Pipe mechanical tolerance budget**	1.8	[mm]
	Pipe alignment tolerance budget**	4	[mm]
	Min. Inner pipe diameter	91	[mm]
	Thickness pipe (2x)	3	[mm]
	Min. Outter pipe diameter	97	[mm]

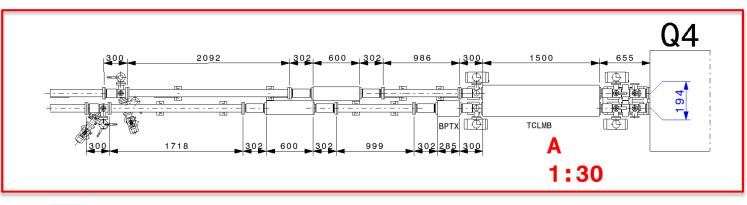
**Dimension given in diameter

85 + mechanical tolerance = 85+1.8 = 86.8

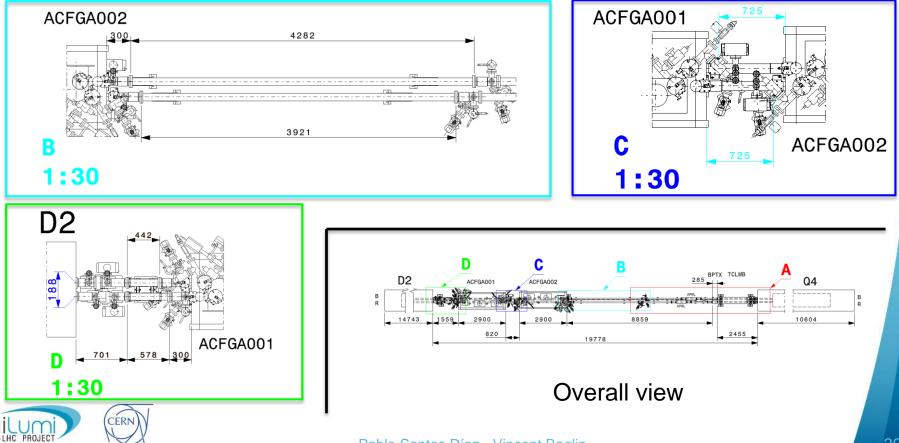
86.8 + alignment tolerance = 86.8+4 = 90.8 → <u>91 mm</u> → <u>DN100 flange</u>

The minimum inner diameter is 91 mm. The minimum outer diameter is 97 mm.


[&]LHC vacuum chamber ID100 Mech. Tol. → Cylindricity = concentricity + straightness + parallelism = 1.8 mm (dimension given in diameter)


* Today for LHC = 4 mm (dimension given in diameter)

For more info more detailed see presentation "Vacuum layout between D2 and TAXN" presented in HL-LHC Integration Meeting n43 on 29 Apr 2016.


Detailed vacuum layout study [I]

Detailed vacuum layout study [II]

