HL-LHC tolerances of alignment in LSS1 and LSS5

Hélène MAINAUD DURAND,
With input from R. Jones, C. Boccard, J. Wenninger, P. Santos Diaz, V. Baglin, S. Redaelii, R. De Maria, F. Cerutti, F. Sanchez Galan, SU team, etc.

ENGINEERING DEPARTMENT

HL-LHC integration meeting
16/12/2016

Table of contents

- Ground motion in ATLAS \& CMS caverns and in LSS1\& LSS5
- A small reminder of the baseline
- Alignment tolerances in LSS5

Ground motion in ATLAS

D. Mergelkuhl, edms nº1611954

Ground motion in ATLAS

Plan XY
D. Mergelkuhl, edms nº1611954

16.17	US Side					
	- $\mathrm{C} 23+10$					-A23+10
		- ${ }^{\text {C17+8 }}$	-80+8		-A17*8	
		$+2.0$	$+2.0$	$+1.9$		
	- ${ }^{\text {C23+5 }}$	- ${ }^{\text {C12+5 }}$	-80+5	-A11+5		-A23+5
Y	C Side	BCUS BCUSA	BMUS BMUSA		BAUS BAUSA	A Side
		-C12-5	-B0-5	-A11-5		
	-C23-7	+3.3	$+2.9$	$+2.6$		-A23-7
	TCUSA - ref.		-B0-9			
				TAUS	ref.	
	-C22-15	-C17-14			-A17-14	-A22-15
-19.47	USA Side					
	8.63		\times			28.63

Figure 2 : Positions and names of the stability floor points and bed-plates HLS sensors
(C12-5, A23-7, ... : points on floor - BCUS, ... : HLS sensor on bed-plate, TCUSA and TAUSA : references HLS system)

Ground motion in LSS1

D. Missiaen, edms nº1233554

Ground motion around IP1 from 2006

Ground motion in CMS

Stability: Cavern floor leveling

Anchoring in the ground of the cave

Ground motion in LSS5

D. Missiaen, edms nº1233554

Groud motion around PT5 from 2006

Cumulative distance (m)

Proposal concerning jacks stroke (To be discussed)

- Max displacements are observed at point1:
- ~ + $0.25 \mathrm{~mm} /$ year near the center of the cavern floor
- ~ + $0.25 \mathrm{~mm} /$ year max between the cavern and tunnel points
- \rightarrow max. displacements of tunnel points 2.5 mm for 10 years or 5 mm for 20 years
- One specific area: D2-Q4: impact of civil engineering works not know yet.

A small reminder of the baseline

HL-LHC requirements

- Machine performance

CERN-ACC-2015-0014

Transverse alignment error (1б) $\pm \sqrt{(\pm 0.1)_{\text {fid }}^{2}+(\pm 0.1)_{\text {align, side }}^{2}+(\pm 0.15)_{\text {align, left/right }}^{2}+(\pm 0.17)_{\text {mis }}^{2}} \mathrm{~mm}= \pm 0.27 \mathrm{~mm}$

- Remote adjustment of the position of the HL-LHC components from Q1 to Q5 according to 5 DOF (resolution $<10 \mu \mathrm{~m}$, stroke $\pm 2 \mathrm{~mm}$ TBC)

EN

A small reminder of the baseline

MONITORING OF THE RELATIVE POSITION

■
HL-LHC

- Stretched wire (or alternative solution)
$=$ Sensors (vertical + transverse measurements)
$=$ Sensors (triplet radial reference for the cavern)

- HLS sensor (or alternative)
- Hydraulic network (or alternative)

Alignment tolerances in LSS5

WP8

Current tolerances are 0.5 mm for the determination of the position and -+ 10 mm in each of the 4 support points ((two vertical and two horizontal).
The new TAXS will have similar values but due to the fact that the cavern movements are known the range could be decreased 0.5 mm and -+5 mm (which is better for the bellows after) [F. Sanchez Galan]

Alignment tolerances in LSS5

Main components Q3, CP, D1 BI

Adjustment: manual (initial alignment) : $\pm 10 \mathrm{~mm}$ (vertical, horizontal) Adjustment: motorized: $\pm 5 \mathrm{~mm}$ in vertical, radial (resolution $<10 \mu \mathrm{~m}$) Determination of position: $\pm 0.1 \mathrm{~mm}(\mathrm{Q} 1 \rightarrow$ Q5) [Baseline]

MPE error of position: 0.1-0.3 mm w.r.t D1 [J. Wenningner] [C. Boccard]

Alignment tolerances in LSS5

BPMWQ

LBRDD

Main components
Adjustment: manual (initial alignment) : $\pm 10 \mathrm{~mm}$ (vertical, horizontal)
Adjustment: motorized: $\pm 5 \mathrm{~mm}$ in vertical, radial (resolution $<10 \mu \mathrm{~m}$)
Determination of position: $\pm 0.1 \mathrm{~mm}$ (Q1 \rightarrow Q5)
[Baseline]
Additional adjustment capabilities: CE impact
Collimators
Same tolerances than LHC [S. Redaelli]
Fiducials position: $0.05 \mathrm{mrad}(\mathrm{roll}), \pm 0.15 \mathrm{~mm}(1 \sigma)$ over 200 m w.r.t adjacent quadrupoles
Adjustment system to improve, remote measurements of targets to study

Alignment tolerances in LSS5

Fixed mask
TCTPV, TCTXN, TCLX
TAXN and fixed mask must be aligned with the magnets for protection and aperture. Only small residual of ground motion $\sim 1 \mathrm{~mm}$ accounted for aperture. [R. De Maria] definitely, the masks have to be aligned with the magnet (that follows on the non-IP side). [F. Cerutti]
Same adjustment and position determination capabilities than the main components?

Main components

Crab cavities, Q4
Adjustment: manual (initial alignment) : $\pm 10 \mathrm{~mm}$ (vertical, horizontal)
Adjustment: motorized: $\pm 5 \mathrm{~mm}$ in vertical, radial (resolution $<10 \mu \mathrm{~m}$)
Rama Calaga to be contacted
Determination of position: $\pm 0.1 \mathrm{~mm}$ (Q1 \rightarrow Q5)
[Baseline]
Additional adjustment capabilities: CE impact

Alignment tolerances in LSS5

Shielding TCTPV, TCTXN, TCLX
TAXN and fixed mask must be aligned with the magnets for protection and aperture. Only small residual of ground motion ~1 mm accounted for aperture. [R. De Maria] definitely, the masks have to be aligned with the magnet (that follows on the non-IP side). [F. Cerutti] Same adjustment and position determination capabilities than the main components?
Collimators

Same tolerances than LHC [S. Redaelli]

Fiducials position: $0.05 \mathrm{mrad}($ roll $), \pm 0.15 \mathrm{~mm}(1 \sigma)$ over 200 m w.r.t adjacent quadrupoles Adjustment system to improve, remote measurements of targets to study

Main components

Q5
Adjustment: manual (initial alignment) : $\pm 10 \mathrm{~mm}$ (vertical, horizontal) Adjustment: motorized: $\pm 5 \mathrm{~mm}$ in vertical, radial (resolution $<10 \mu \mathrm{~m}$)
Determination of position: $\pm 0.1 \mathrm{~mm}(\mathrm{Q} 1 \rightarrow$ Q5)
[Baseline]

Case of components after Q6

- Quadrupoles \& dipoles:
- Determination of fiducials position: 1σ deviation w.r.t a smooth curve of 0.15 mm in a 150 m sliding window
- Adjustment: $\pm 20 \mathrm{~mm}$ in vertical, $\pm 10 \mathrm{~mm}$ in horizontal
- Case of intermediary components:
- same procedure than in the LHC w.r.t adjacent components: determination of fiducials position w.r.t adjacent components within $\pm 0.15 \mathrm{~mm}$.

Summary

- Current issues:
- Alignment requirements of BPMWQ in front of D2 and BPMSCW after D1 can't be achieved with the present layout
- VAB and fixed mask around Q4 and Q5
- To be defined:
- Aperture of BPTX
- Tolerances of alignment of APWL
- DFXJ case
- VSC device in front of Q1
- To be studied by SU: a remote measurements system for the intermediary components
- To be validated by SU: the design of the intermediary components supports

Summary

- What can be achieved in a closed tunnel:

The alignment of all the main components (continuous determination of position + remote adjustment): Q1, Q2, Q3, CP, D1, TAXN, D2, Crabs cavities cryostats, Q4, Q5

- What can be achieved during TS:

Same than before + alignment of intermediary components according to the radiation level (only the intermediary components equipped with dedicated targets for remote determination \& supported by "easy" adjustment systems)

- What can be achieved during YETS, LS:

Same than before + all intermediary components (according to the radiation level)

