Dark radiation in IAXO

José Manuel Carmona Universidad de Zaragoza

- 1. The *axiverse* from string theory
- 2. *Moduli* and dark radiation
- 3. The cosmic axion background and IAXO

References:

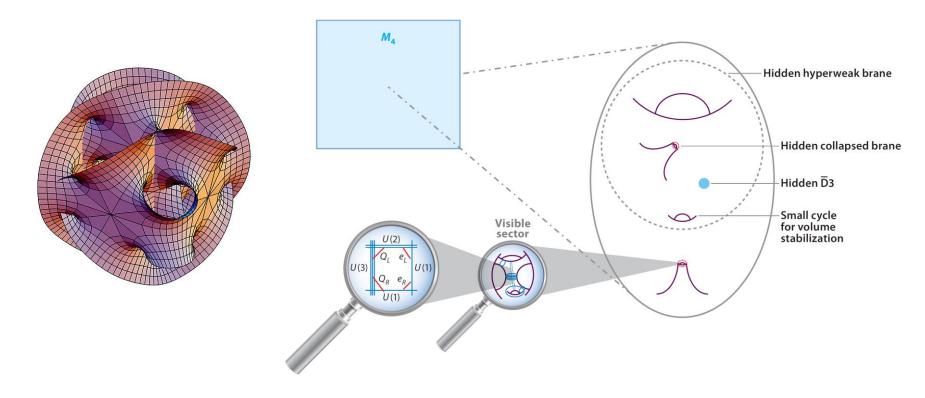
- Arvanitaki et al., PRD 81 (2010)
- Conlon & Marsch, JHEP 10 (2013), PRL 111 (2013)
- J. Conlon, talk at ESQG (Frankfurt, 2016)
- J. Redondo, private communication

Fine-tuning and the strong CP problem

- ► $\bar{\theta} = \theta + \arg \det m_q$ and $\bar{\theta} \le 10^{-10}$ seems like a big fine-tuning: strong CP problem
 - Moreover, no symmetry of the SM is restored as $\bar{\theta} \rightarrow 0$
- Other similar apparent fine-tunings: cosmological constant, hierarchy problem
- However, $\bar{\theta} \ll 1$ has no anthropic solution: call for a dynamical mechanism

▶ PQ mechanism: a new (anomalous) spontaneously broken chiral symmetry U(1)_{PQ}

- QCD axion: the NG boson of the SSB, $\langle a \rangle = -(f_a/\xi)\bar{\theta}$
- BUT: all other sources of explicit U(1)_{PQ} breaking should be at least 10 orders of magnitude down with respect to the potential generated by the QCD anomaly


Axions & IAXO in Spain, 27 oct 2016

Quantum gravity effects? ——> String theory

1. The axiverse from string theory

Axions in string theory

- Massless fields arise in string theory under compactification of M_6 as Kaluza-Klein zero modes of antisymmetric tensor fields, present in all string theories
 - Number of massless scalar fields is determined by the topology of the compactification (e.g., number of 2-cycles in M₆, usually more than one hundred)

1. The *axiverse* from string theory

Axions in string theory

- Massless fields arise in string theory under compactification of M_6 as Kaluza-Klein zero modes of antisymmetric tensor fields, present in all string theories
 - Number of massless scalar fields is determined by the topology of the compactification (e.g., number of 2-cycles in M₆, usually more than one hundred)
 - Anomaly-cancellation conditions result in axion-like couplings for these fields

 \rightarrow

String compactifications have *plenty of candidates* for axion-like particles

But... do they really predict the QCD axion?

Difficulties:

- String axions can be removed from the low-energy spectrum by different mechanisms (presence of fluxes, branes,...)
- 2. A QCD axion from string theory would have a cosmologically nonallowed large value of the SSB scale f_a

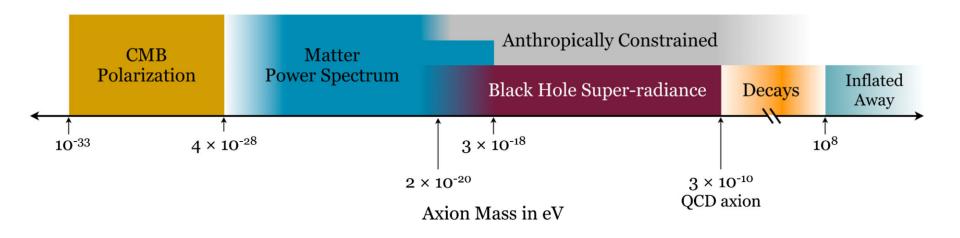
1. The axiverse from string theory

The QCD axion in string theory

• Standard limits on f_a :

 $f_a > 10^9 \text{ GeV}$ (lab/astrophysics), and $f_a < 10^{12} \text{ GeV}$ (cosmology) [large $f_a \rightarrow$ axion oscillations start later \rightarrow larger energy density of axions today]

Non-perturbative corrections to the string theory axions (couplings to e.g. worldsheet / membrane instantons) must not spoil PQ mechanism: $\mu^4 \exp(-S_{\text{inst}}) < 10^{-10} \xi f_{\pi}^2 m_{\pi}^2 \implies S_{\text{inst}} \ge 200$

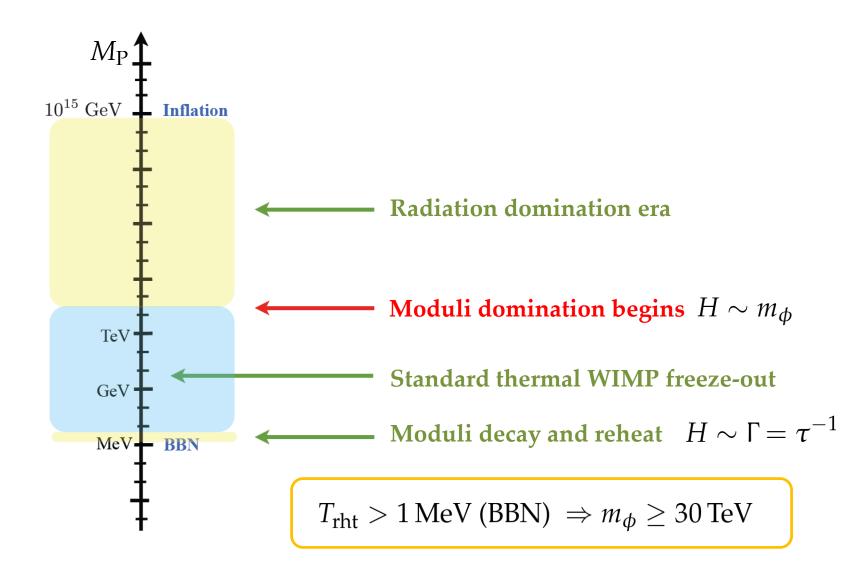

This is a significant constraint for string theory models

- Quite generally, $f_a \sim M_{\rm P}/S_{\rm inst} \rightarrow f_a \sim M_{\rm GUT} \simeq 2 \times 10^{16} \, {\rm GeV}$
- Possible solutions:
 - The cosmological constraint is not valid (e.g., different axion initial conditions in different patches of the Universe)
 - f_a can be lowered significantly if a large amount of warping is present

1. The axiverse from string theory

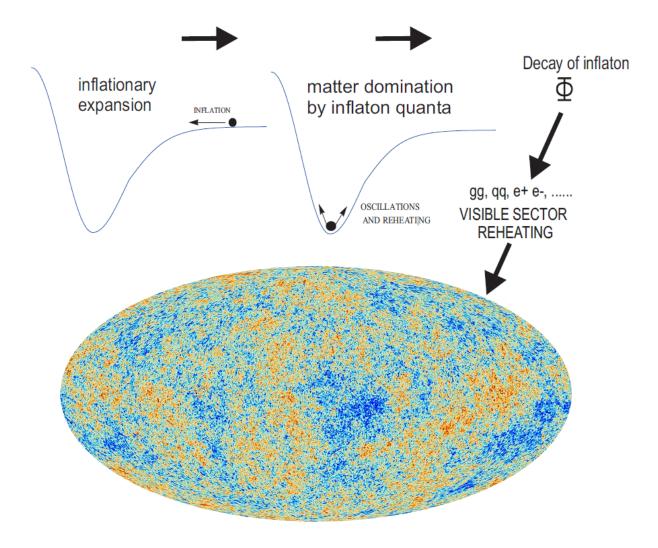
The string *axiverse*

- No anthropic origin of the solution to strong CP problem:
 - No fine tuning in the existence of the QCD axion & extreme smallness of all non-QCD contributions to its potential: dynamical consequence
 - String theory compactifications have a potential or producing hundreds of light axions
- The QCD axion as a solution of the strong CP problem implies the existence of many light axions, homogeneously distributed on a log scale

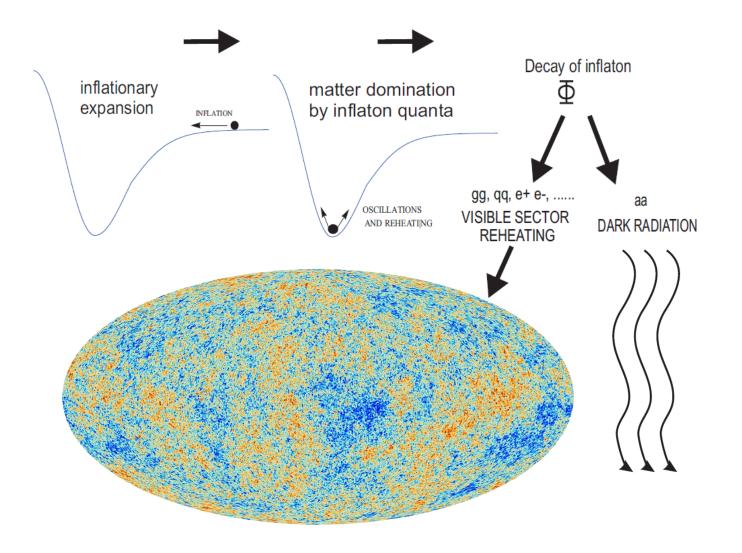

Compactifications and moduli

- String compactifications generically predict scalar particles: moduli
 - The vacuum expectation values of massless scalar fields determine the geometry of the internal manifold
 - They need to be stabilized to get a sensible low-energy theory; depending on the stabilization mechanism, they can get masses from O(TeV) to M_{P}
- Since moduli interact with gravitational strength, they live long and decay late:
 - Moduli oscillation after inflation dominate the energy density of the universe (modification of calculation of freeze-out relic densities of DM)
 - 2. Reheating comes from the decays of these moduli

$$T_{\rm rht} \sim \left(\frac{m_{\phi}}{100\,{\rm TeV}}\right)^{3/2} 3\,{\rm MeV}$$


Potential problem with BBN (cosmological moduli problem)

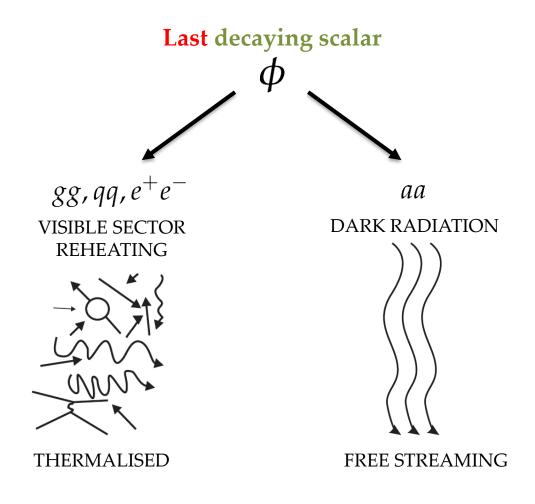
A non-standard thermal history of Universe


2. Moduli and dark radiation

Dark radiation

2. Moduli and dark radiation

Dark radiation



2. Moduli and dark radiation

Moduli decay and dark radiation

- Dark radiation modify CMB and BBN; however, current observational values from WMAP, ACT, SPT, Planck leave room for $\Delta N_{eff} \sim 0.1 0.3$
- Dark radiation is well-motivated in string theory:
 - Moduli generally couple to everything with $1/M_{\rm P}$ couplings
 - There is no reason to expect vanishing couplings to hidden sectors
- Explicit studies of string effective field theories support axionic decay modes with branching ratios $B_a(\phi \rightarrow aa) \sim 0.01 \rightarrow 1$
- Therefore, in string theory we should expect reheating to be driven by the latetime decays of massive Planck-coupled particles
- As radiation redshifts as a⁻⁴ and matter redshifts as a⁻³, we expect reheating to be driven by the last scalar field to decay
- Since it does not interact, dark radiation propagates freely after this

Moduli decay and dark radiation

Dark radiation arises from hidden sector decays of moduli

2. Moduli and dark radiation

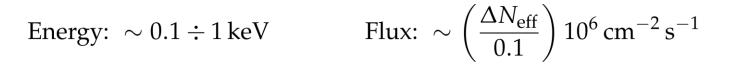
A cosmic axion background

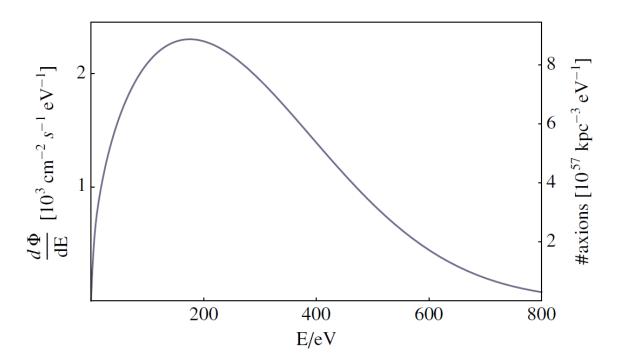
Since moduli couplings to SM particles and axions are of order $1/M_P$: $\Gamma \sim \frac{m_{\phi}^3}{M_P^2}$ At decay, $H_{\text{decay}} \sim \tau^{-1} = \Gamma$, the energy density and temperature are:

$$H_{\rm decay} = \sqrt{\frac{8\pi G\rho}{3}} \quad \Rightarrow \quad T_{\rm rht} \sim \rho^{1/4} \sim \frac{m_{\phi}^{3/2}}{M_{\rm P}^{1/2}} \sim 0.6 \,{\rm GeV} \left(\frac{m_{\phi}}{10^6 \,{\rm GeV}}\right)^{3/2}$$

• The two-body decays $\phi \rightarrow aa$ give an energy for these axions:

$$E_a = \frac{m_\phi}{2} = 5 \times 10^5 \,\text{GeV} \left(\frac{m_\phi}{10^6 \,\text{GeV}}\right)$$


- Thermal bath cools into CMB while axions never thermalize
- The ratio of axion energy to photon temperature is retained through cosmic history!


$$\frac{E_a}{T_{\gamma}} \sim \left(\frac{M_{\rm P}}{m_{\phi}}\right)^{1/2} \sim 10^6 \left(\frac{10^6 \,{\rm GeV}}{m_{\phi}}\right)^{1/2} \sim \frac{E_a^0}{T_{\gamma}^0}$$

• Today, these axions have $E_a^0 \sim \mathcal{O}(200 \,\mathrm{eV})$

A cosmic axion background

PREDICTION: Cosmic Axion Background (CAB)

3. The cosmic axion background and IAXO

A cosmic axion background

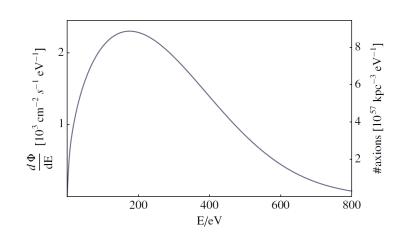
PREDICTION: Cosmic Axion Background (CAB)

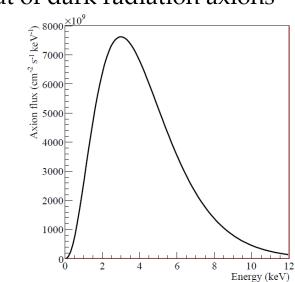
Energy: $\sim 0.1 \div 1 \,\text{keV}$

Flux:
$$\sim \left(\frac{\Delta N_{\rm eff}}{0.1}\right) 10^6 \, {\rm cm}^{-2} \, {\rm s}^{-1}$$

It is a dark analogue of the CMB at much higher energy

- This expectation comes from simple and general properties of moduli
- It is not tied to any precise model for moduli stabilization
- It just requires the existence of massive particles only interacting gravitationally
- For $10^5 \text{ GeV} \le m_{\phi} \le 10^8 \text{ GeV}$ the CAB lies today in extreme UV/soft X-ray
- **Can this CAB be detected?** Look for signatures of $a \rightarrow \gamma$ conversion in
 - Astrophysical/cosmological magnetic fields (galaxy clusters)
 - Signals in helioscopes?

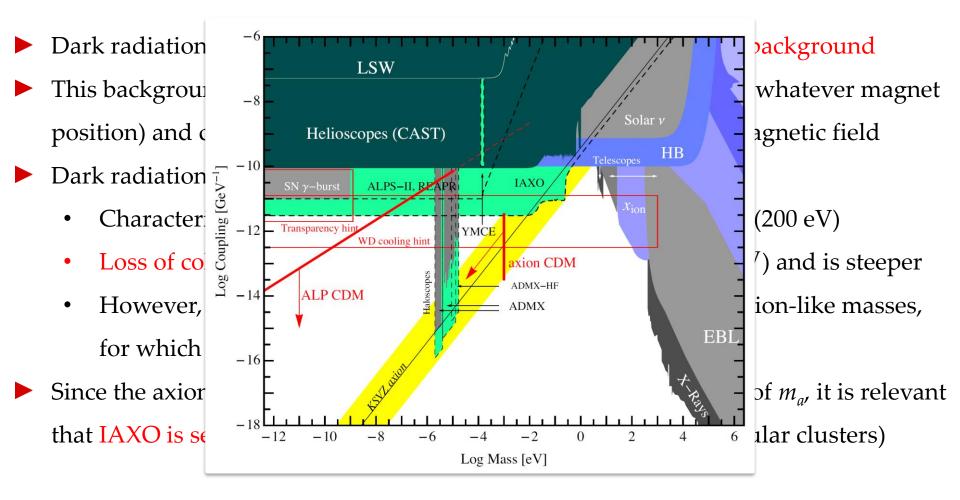

Dark radiation and solar axions


- The flux of dark radiation is isotropic; that of solar axions is directional
- The solar axion flux is suppressed by two powers of the axion decay constant

$$\Phi_{\text{solar}} = \left(\frac{g_{a\gamma\gamma} \times 10^{10} \,\text{GeV}}{10^{10} \,\text{GeV}}\right)^2 3.54 \times 10^{11} \,\text{cm}^{-2} \,\text{s}^{-1}$$
$$\equiv 1.91 \times 10^6 \left(\frac{10^{10} \,\text{GeV}}{f_a}\right)^2 \,\text{cm}^{-2} \,\text{s}^{-1}$$
$$\Phi_a \sim 10^6 \,\text{s}^{-1} \,\text{cm}^{-2}$$

DR axions can easily dominate solar axions for non-excluded values of f_a

The spectrum of solar axions differ from that of dark radiation axions


3. The cosmic axion background and IAXO

Dark radiation at IAXO

- Dark radiation axions could be observed by IAXO as an isotropic background
- This background would come however from the magnet bores (in whatever magnet position) and could be switched on/off (or modulated) with the magnetic field
 Dark radiation signatures:
 - Characteristic spectrum; needs low threshold X-ray detectors (200 eV)
 - Loss of coherence starts earlier than in CAST ($m_a \ge 2 \cdot 10^{-3} \text{ eV}$) and is steeper
 - However, from the *axiverse* picture, we expect a plethora of axion-like masses, for which there is coherence of the conversion in vacuum
- Since the axion-photon coupling is a free parameter, independent of m_a, it is relevant that IAXO is sensitive to values beyond direct bounds (ie SN/globular clusters)

3. The cosmic axion background and IAXO

Dark radiation at IAXO

3. The cosmic axion background and IAXO

Dark radiation at IAXO

But... can IAXO be really sensitive to this cosmic axion background?

$$\Phi_a \sim \left(\frac{m_{\phi}}{5 \cdot 10^6 \,\text{GeV}}\right) \left(\frac{\Delta N_{\text{eff}}}{0.1}\right) 10^6 \,\text{cm}^{-2} \,\text{s}^{-1} = \frac{2 \cdot 10^8}{\langle E \rangle [eV]} \left(\frac{\Delta N_{\text{eff}}}{0.1}\right)$$

While at $g_{a\gamma\gamma} = 10^{-10} \,\text{GeV}^{-1}$, $\rightarrow \Phi_{\text{solar}} \sim 3.5 \times 10^{11} \,\text{cm}^{-2} \,\text{s}^{-1}$

- To have comparable fluxes: $m_{\phi} \sim 6 \cdot 10^{17} \,\text{GeV} \rightarrow \langle E \rangle \sim 6 \cdot 10^{-4} \,\text{eV!}$
- Moreover, $g_{a\gamma\gamma} \sim 10^{-10} \,\text{GeV}^{-1} \Rightarrow f_a \sim 2 \cdot 10^7 \,\text{GeV}$
- To have a rough idea of the sensitivity of IAXO at this scale:

events/year
$$\sim \frac{450}{\langle E \rangle \, [eV]}$$

 $(B = 3 \text{ T}, L = 20 \text{ m}, 8 \text{ bores of } 60 \text{ cm of diam}, \Delta N_{\text{eff}} = 0.1, g_{a\gamma\gamma} = 10^{-10} \text{ GeV}^{-1})$

3. The cosmic axion background and IAXO

Conclusions

- String theory supports the existence of axion and axion-like particles
- It also supports the existence of a cosmic axion background coming from the decay of moduli
- However, with "natural" values of the parameters, this CAB would be inobservable in IAXO
- For certain values of the parameters, this CAB could be observable, but would require very low threshold detectors
- The feasibility of this observation needs a more detailed background and detector study