Low background microbulk Micromegas detectors for axion searches

F.J. Iguaz, on behalf of Zaragoza group Axions & IAXO in Spain – 27th October 2016

Work partially supported by Juan de la Cierva program

(*) iguaz@unizar.es

F.J. Iguaz - Micromegas for axions

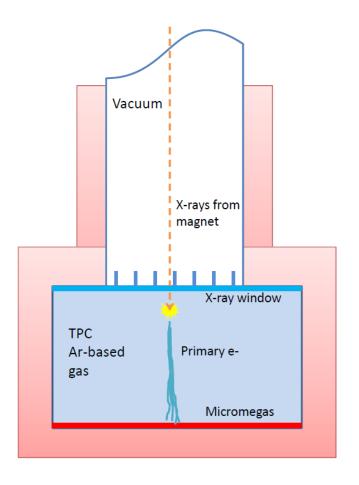
Many thanks to my colleagues: F. Aznar, J.F. Castel, T. Dafni, J.An. García*, J.G. Garza, I.G. Irastorza, G. Luzón, H. Mirallas & E. Ruiz-Chóliz.

* Now at Inst. High. Energy Phys., Beijing.

Outline

- Detection concept: TPCs + Micromegas
- Microbulk Micromegas readouts
- IAXO pathfinder at CAST
- IAXO-D0 project
- Conclusions

F.J. Iguaz - Micromegas for axions


Detection concept - TPCs

Time Projection Chamber (TPC)

- Small gaseous chamber
- Cathode: thin window
 - Holds the detector gas.
 - Transparent to x-rays.
- Anode: A Micromegas readout plane.

TPC working principle

- Ionizing radiation creates primary charges.
- Charges drift towards the anode & amplified.
- Induced signals at the readout.

Micromegas readouts

Universidad

Zaragoza

.....


- Pixelized anode plane
- Suspended metallic (Cu) micromesh

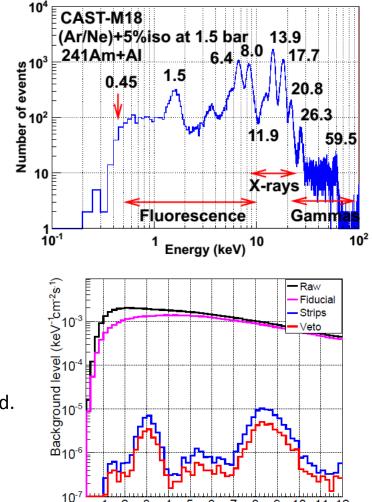
Micromegas working principle

- Primary e-s go through mesh holes.
- Trigger an e- avalanche in the gas, inducing signals both mesh and anode.

Microbulk fabrication technique

- Developped by CERN & CEA/Saclay.
- Kapton sheet double-clad with copper.
 - Radiopure materials.
- Highest precision in gap homogeneity
 - Good energy resolution.

F.J. Iguaz - Micromegas for axions


Gas TPCs with microbulk Micromegas

- Consolidated structure and manufacture.
 - Good performance systematically obtained.
- Good energy resolution. (JINST 7 (2012) P04007)
 - 13% FWHM at 5.9 keV.

Universidad

Zaragoza

- Low energy threshold. (JINST 9 (2014) P01001)
 - 0.45 keV for a 6x6 cm² area, could be improved.
- Low intrinsic radioactivity. (JCAP 1601 (2016) 033)
 - Made out of Kapton and copper.
- Radioactivity control. (JINST 8 (2013) C11012)
 - Material study to select the cleanest components.
- Topological information. (JINST 8 (2013) C12042)
 - High power to discriminate x-rays from background.
- Scaling-up. (EJPC 76 (2016) 529)
 - Proven in NEXT-MM and TREX-DM experiments.

5 6

IAXO@Spain - Zaragoza, 27 October 2016

8 9 10 11 1 Energy (keV)

2 3

F.J. Iguaz - Micromegas for axions

5

Radiopurity of microbulk Micromegas

A key feature for applications in Rear Event Searches.

- First measurement made in 2011 by a Ge detector, already better than PMTs.
- The limits obtained for ²¹⁴Bi & ²⁰⁸Tl isotopes by BiPo-3 experiment in 2016 are *a factor 100 better* than those set by Ge.
- Two new samples (x10 larger area) have been measured in BiPo-3. Preliminary limits are a factor 3 better!

Sample	²³² Th	²³⁵ U
Micromegas without mesh	4.6±1.6	<6.2
Microbulk-Micromegas	<9.3	<13.9
Kapton-copper foil	<4.6 ^a	<3.1ª
Copper-kapton-copper foil	<4.6 ^a	<3.1 ^a

S. Cebrián et al., *Astropart. Phys.* **34** (2011) 354-359

Γ	#	Material,Supplier	Method	Unit	$^{214}\mathrm{Bi}$	208 Tl	
	16	Microbulk Micromegas, $CAST/CERN$	BiPo-3	$\mu {\rm Bq/cm^2}$	< 0.134	< 0.035	
	17	Cu-kapton-Cu foil, CERN	BiPo-3	$\mu \mathrm{Bq/cm^2}$	< 0.141	< 0.012	I.G. Irastorza et al.,
	18	Kapton-epoxy foil, CERN	BiPo-3	$\mu { m Bq/cm^2}$	< 0.033	$<\!0.008$	JCAP 01 (2016) 033.
	19	Vacrel foil, Saclay	BiPo-3	$\mu { m Bq/cm^2}$	< 0.032	$<\!0.013$	
	20	Kapton-diamond foil, CERN	BiPo-3	$\mu \rm Bq/cm^2$	< 0.055	< 0.016	

6

F.J. Iguaz - Micromegas for axions

Universidad

Zaragoza

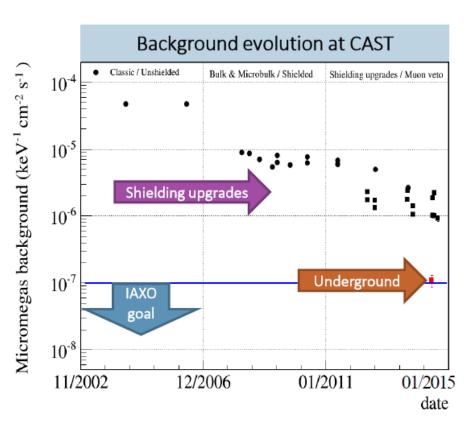
.....

7

Background improvements

- Non-radiopure components replaced.
- Active shielding

Universidad


Zaragoza

- Scintillators as muon vetos covering the maximum solid angle.
- Passive shielding
 - Detector chamber & tubes of copper.
 - 10 cm lead around the detector.
- Event topology
 - Time information of each strip signal
 -> 3D topology of each event.
 - Improvement in rejection algorithms.

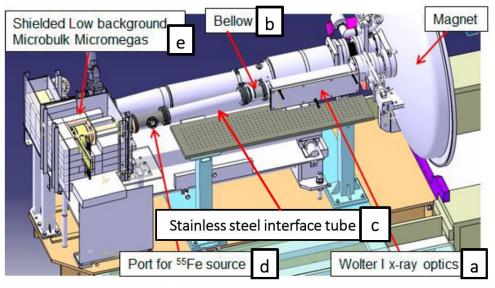
Key numbers for comparison:

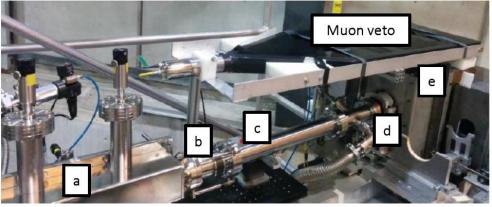
- CAST -> (8.3 ± 0.3) x 10⁻⁷ counts keV⁻¹ cm⁻² s⁻¹
- LSC -> (1.1 ± 0.1) x 10⁻⁷ counts keV⁻¹ cm⁻² s⁻¹
- IAXO goal-> 10⁻⁷ 10⁻⁸ counts keV⁻¹ cm⁻² s⁻¹

IAXO pathfinder at CAST

Combination of two IAXO techniques: x-ray optics + Micromegas detector

X-ray optics:

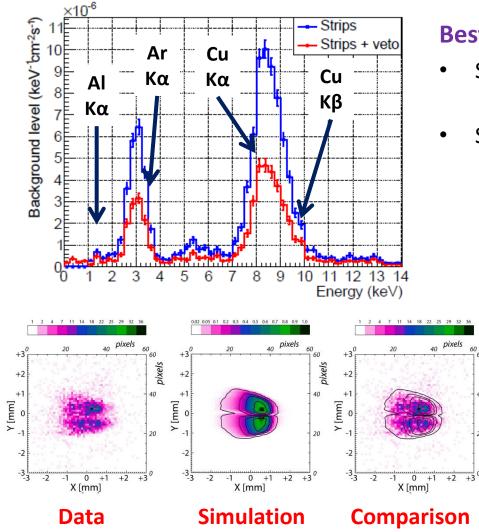

- Wolter I x-ray telescope
- Focal length: 1.5 m.
- Focusing spot: 1-5 mm².


Micromegas detector:

- New design based on Cu & TFE.
- AGET-based electronics.
- Shielding: 20 mm Cu + 100 mm Pb.
- Plastic scintillators as veto.

Performance:

- 8 months of smooth data-taking.
- Best signal-to-noise ratio.
- Data will be used for CAST physics.


F.J. Iguaz - Micromegas for axions

8

F. Aznar et al., JCAP**12** (2015) 008.

IAXO pathfinder performance

Best background level of a MM detector

- Strips + veto:
 - (8.3 \pm 0.3) x 10⁻⁷ counts keV⁻¹ cm⁻² s⁻¹
- Spectrum dominated by:
 - Cu escape peak at 8 keV.
 - Ar fluorescence line at 3 keV.

The "axion spot"

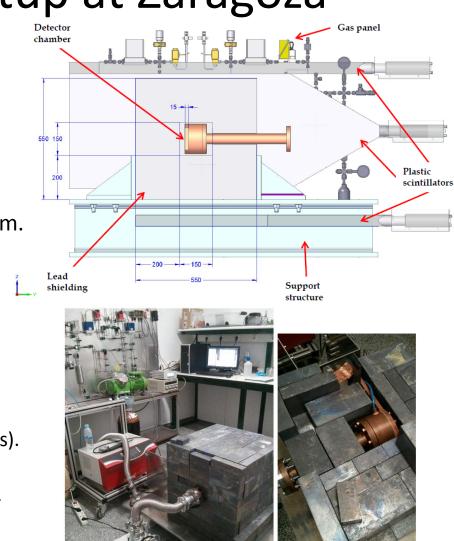
- The area where the axion signal is expected.
- Spot stable during the data-taking.
- Agreement between simulation and measurements, i.e., proper alignement.

9

pixels

The IAXO-D0 setup at Zaragoza

Goals:


- Background level: 10⁻⁷-10⁻⁸ keV⁻¹ cm⁻² s⁻¹.
- Energy threshold: ~0.1 keV.


Improvements:

- Enlarge the lead shielding from 10 to 20 cm.
- An improve active shielding, 4π coverage.
- New gas system to work with xenon.

Micromegas detector:

- Based on IAXO pathfinder detector.
 - 6x6 cm² readout area, strip pattern pitch.
 - Electroformed Cu chamber (3 cm thickness).
 - Spider-web strongback + 4 um Al mylar.
- AGET-based electronics, with auto-trigger capability for every readout channel.

10

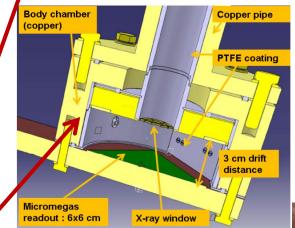
Goals:

- Background level: 10⁻⁷-10⁻⁸ keV⁻¹ cm⁻² s⁻¹.
- Energy threshold: ~0.1 keV.

Improvements:

Universidad

Zaragoza


- Enlarge the lead shielding from 10 to 20 cm.
- An improve active shielding, 4π coverage.
- New gas system to work with xenon.

Micromegas detector:

- Based on IAXO pathfinder detector.
 - 6x6 cm² readout area, strip pattern pitch.
 - Electroformed Cu chamber (3 cm thickness).
 - Spider-web strongback + 4 um Al mylar.
- AGET-based electronics, with auto-trigger capability for every readout channel.

IAXO@Spain - Zaragoza, 27 October 2016

F.J. Iguaz - Micromegas for axions

IAXO-D0 shielding

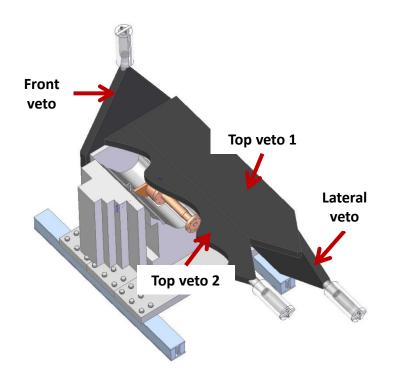
Passive shielding:

Electroformed Cu chamber & pipes

• Innermost shielding for lead radiation.

Lead shielding:

E


- 20 cm of lead, 4π coverage.
- Properly stop gamma radiation.

Active shielding:

Muon vetoes

- 5 scintillators to tag muons.
- Designed for a 4π coverage.

F.J. Iguaz - Micromegas for axions

IAXO-D0 next steps

- Commissioning of the gas system.
- Operation with Xenon.
- Shielding optimization.
- Auto-trigger electronics.
- Background model completion.

First results expected mid-2017

F.J. Iguaz - Micromegas for axions

Conclusions

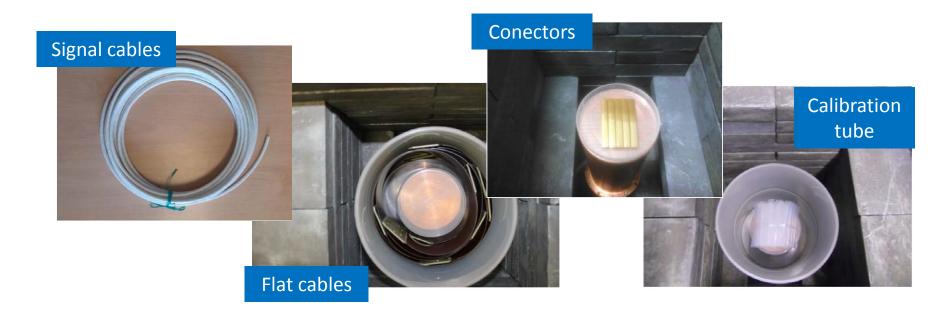
- Microbulk Micromegas detectors show nice features for axion searches
 - Excellent radiopurity, good energy solution in Rol & consolidated manufacture.
- IAXO pathfinder at CAST has proven that the combination of an x-ray focusing device together with a Micromegas detector gives good results in terms of performance and background levels.
- IAXO-D0 setup is an IAXO detector prototype that is being commissionned.
 - Designed to minimize background level with a (new) better active & passive shielding.
 - First results are expected for mid-2017.

Conclusions

- Microbulk Micromegas detectors show nice features for axion searches
 - Excellent radiopurity, good energy solution in Rol & consolidated manufacture.
- IAXO pathfinder at CAST has proven that the combination of an x-ray focusing device together with a Micromegas detector gives good results in terms of performance and background levels.
- IAXO-D0 setup is an IAXO detector prototype that is being commissionned.
 - Designed to minimize background level with a (new) better active & passive shielding.
 - First results are expected for mid-2017.

Thanks for your attention!

Back-up slides


F.J. Iguaz - Micromegas for axions

B0

Material screening program

- The radioactivity measurement of all relevant components of the experiment: shielding, vessel, calibration system, field cage, electronics & detectors.
- Mainly based on a germanium gamma-ray spectrometry at LSC.
- Found radiopure versions of the micromegas detectors, flat cables and conectors. They will be installed in the final version for LSC.
- More details: F. Aznar *et al., JINST* **8** (2013) C11012 & JCAP01(2016)033.

B1

F.J. Iguaz - Micromegas for axions

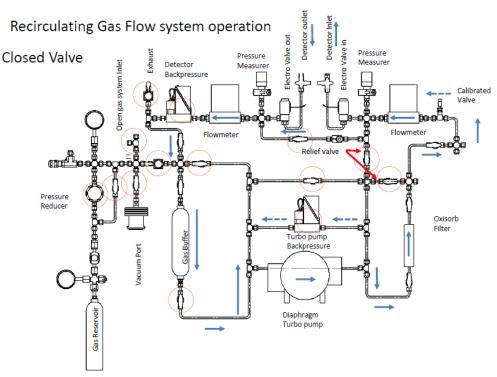
Material screening program

#	Material, Supplier	Technique	Unit	²³⁸ U	226 Ra	²³² Th	²²⁸ Th	235U	⁴⁰ K	^{60}Co
1	Pb. Mifer	GDMS	mBq/kg	<1.2		< 0.41		_	0.31	
2	Pb, Mifer	GDMS	mBq/kg	0.33		0.10			1.2	
3	Cu, Sanmetal	GDMS	mBq/kg	< 0.062		< 0.020			1.2	
4	Cu, hot rolled, Luvata	GDMS	mBq/kg	< 0.012		< 0.0041			0.061	
5	Cu, cold rolled, Luvata	GDMS	mBq/kg	< 0.012		< 0.0041			0.091	
6	Cu, Luvata	Ge	mBq/kg	0.012	<7.4	<0.8	<4.3		<18	< 0.8
7	Kapton-Cu, LabCircuits	Ge	$\mu Bq/cm^2$	<160	<14	<12	<8	<2	<40	<2
8	Teflon, Sanmetal	Ge	$\mu Bq/cm$ mBq/kg	<157	<4.1	<6.6	<4.8	<4.8	<19	<1.2
9	Teflon tube, RS	Ge	mBq/kg	<943	<21	<37	<31	<19	510 ± 170	<7.6
10	Stycast, Henkel	Ge	mBq/kg	$(3.7\pm1.4)10^3$	52 ± 10	44 ± 12	38 ± 9	<15	$(0.32\pm0.11)10^3$	<5.5
10	Epoxy Hysol, Henkel	Ge	mBq/kg	<273	<16	<20	<16		<83	<4.2
12	SMD resistor, Farnell	Ge	mBq/pc	2.3 ± 1.0	0.16 ± 0.03	0.30 ± 0.06	0.30 ± 0.05	< 0.05	0.19 ± 0.08	<0.02
13	SM5D resistor, Finechem	Ge	mBq/pc mBq/pc	0.4 ± 0.2	0.022 ± 0.007	< 0.023	< 0.016	0.012 ± 0.005	0.13 ± 0.03 0.17 ± 0.07	< 0.02
14	CF40 flange, Pfeiffer	Ge	mBq/bc mBq/kg	0.4±0.2	14.3 ± 2.8	9.7 ± 2.3	16.2 ± 3.9	3.2 ± 1.1	<17	11.3 ± 2.7
	0,		10	< 77	9.2±1.1	19.6±3.6	18.5 ± 2.2	1.5±0.4	12.2±4.1	
15	Connectors, Samtec	Ge	mBq/pc	<77						<0.6
16	Connectors, Panasonic	Ge	mBq/pc	<42	6.0±0.9	9.5±1.7	9.4 ± 1.4	< 0.95	4.1 ± 1.5	<0.2
17 18	Connectors, Fujipoly	Ge Ge	mBq/pc	<25 <370	$4.45{\pm}0.65$ $101{\pm}13$	1.15 ± 0.35 165 ± 29	0.80 ± 0.19 164 ± 23		7.3 ± 2.6 80 ± 25	< 0.1 < 5
18	Flat cable, Somacis		mBq/pc	$< 1.5 \ 10^3$	101 ± 13 123 ± 17	165 ± 29 225 ± 40			80 ± 25 112 ± 40	-
	Flat cable (rigid), Somacis	Ge	mBq/pc		(3.8)		198 ± 29	<1.0		<5.8
$\frac{20}{21}$	Flat cable (flexible), Somacis Flat cable, Somacis	Ge Ge	mBq/pc mBq/pc	<102 <45	<3.8 <1.7	<4.0 <1.8	< 1.4 < 0.61	<1.8 <0.77	$<\!$	$< 0.7 \\ < 0.3$
$\frac{21}{22}$	Flat cable, Somacis	Ge	-/ -	<14	<1.7 0.44 \pm 0.12	< 1.8	< 0.61	<0.19	< 0.0 1.8 ± 0.7	<0.3 <0.09
22	RG58 cable, Pro-Power	Ge	mBq/pc	< 14 (2.2 ± 0.9)10 ³	$(0.9\pm0.1)10^3$	< 0.55 40 ± 12	< 0.19 29 ± 8	<212	1.8 ± 0.7 108 ± 43	< 9.2
$\frac{23}{24}$	Teflon cable, Druflon	Ge	mBq/kg	$(2.2\pm0.9)10^{-1}$	$(0.9\pm0.1)10^{-1}$ <2.2	40±12 <3.7	< 1.7	<1.4	21.6 ± 7.4	< 9.2
$\frac{24}{25}$	Teflon cable, Axon	Ge Ge	mBq/kg mBq/kg	$< 104 \\ < 650$	<2.2 <24	<3.7 <15	< 1.7 < 9.9	<1.4 <7.9	21.6 ± 7.4 163 ± 55	<0.7 <4.3
$\frac{25}{26}$	Kapton tape, Tesa	Ge	mBq/kg mBq/kg	$< 1.7 \ 10^3$	<34	<40	<22	<14	$(0.46\pm0.15)10^3$	<4.5 <10
			-, -	-		-		×14		-
27	FR4 PCB, Somacis	Ge	Bq/kg	31±11	15.3 ± 2.1	25.5 ± 4.4	22.5 ± 3.5	-0 80	15.5 ± 4.7	< 0.16
28	PTFE circuit, LabCircuits	Ge	Bq/kg	<36	4.7 ± 0.6	5.0 ± 1.1	6.2 ± 0.9	< 0.50	4.5 ± 1.5	<0.16
29	Cuflon, Crane Polyflon	Ge	mBq/kg	<103	<3.7	<3.6	<1.4	<1.8	<13	<0.6
30	Classical Micromegas, CAST	Ge	$\mu Bq/cm^2$	<40		4.6 ± 1.6		<6.2	<46	<3.1
31	Microbulk Micromegas,CAST	Ge	$\mu Bq/cm^2$	26 ± 14		< 9.3		<14	57 ± 25	<3.1
32	Kapton-Cu foil, CERN	Ge	$\mu Bq/cm^2$	<11		<4.6		<3.1	<7.7	<1.6
33	Cu-kapton-Cu foil, CERN	Ge	$\mu Bq/cm^2$	<11		<4.6		<3.1	<7.7	<1.6
34	Vacrel, Saclay	Ge	$\mu Bq/cm^2$	<19	< 0.61	< 0.63	< 0.72	< 0.19	4.6 ± 1.9	< 0.10

F.J. Iguaz et al., *EPJC* **76** (2016) 529

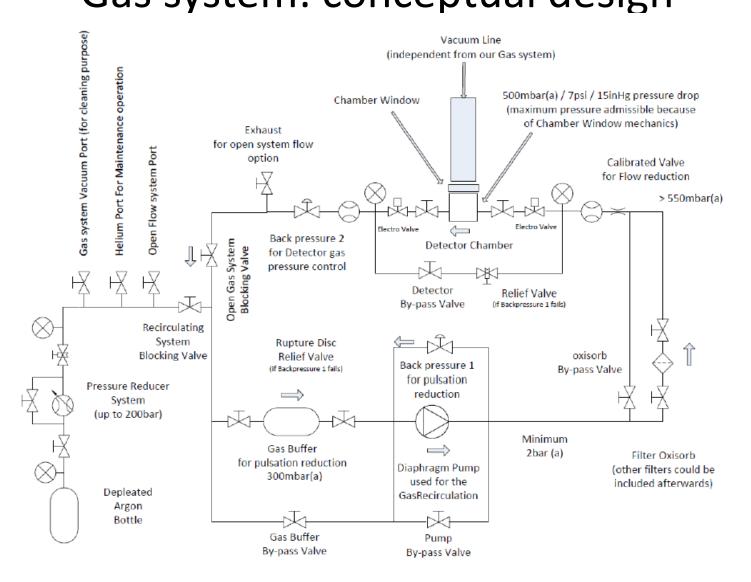
F.J. Iguaz - Micromegas for axions

Main features:


Universidad

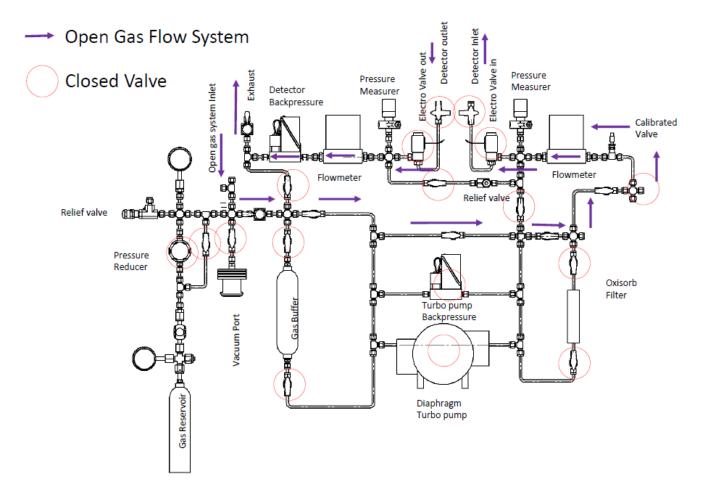
Zaragoza

- Working pressure: 0.3-1.5 bara.
- Volume: 1 normal liter.
- Working modes: open & closed flow.
- Gas recovery by cryopumping.
- An oxisorb filter is available.
- Installed on a wheeled panel


F.J. Iguaz - Micromegas for axions

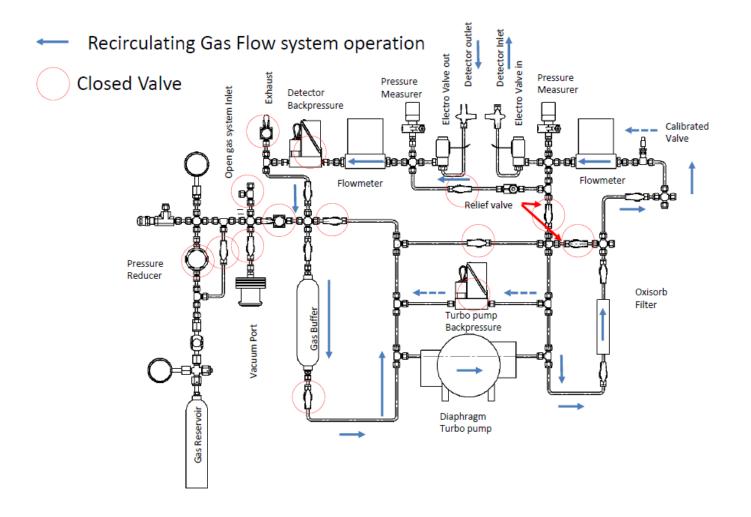
Status:

- Leak tests in vacuum & pressure ended.
- Slow control based on NI-USB/6009 card.
- User manual & documentation in preparation.
 - B3 IAXO@Spain Zaragoza, 27 October 2016


F.J. Iguaz - Micromegas for axions

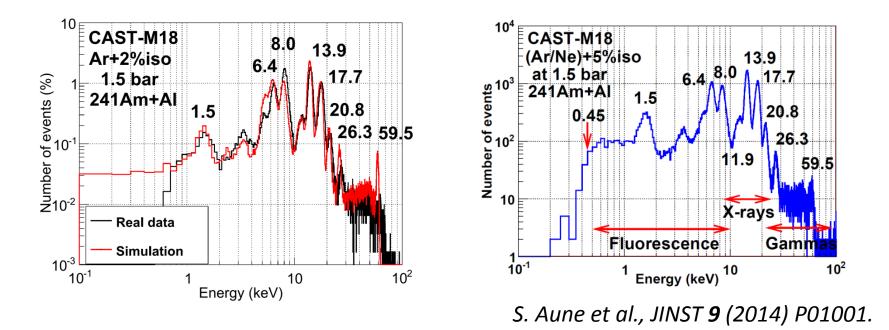
.....

B4


Gas system operations: open gas flow

F.J. Iguaz - Micromegas for axions

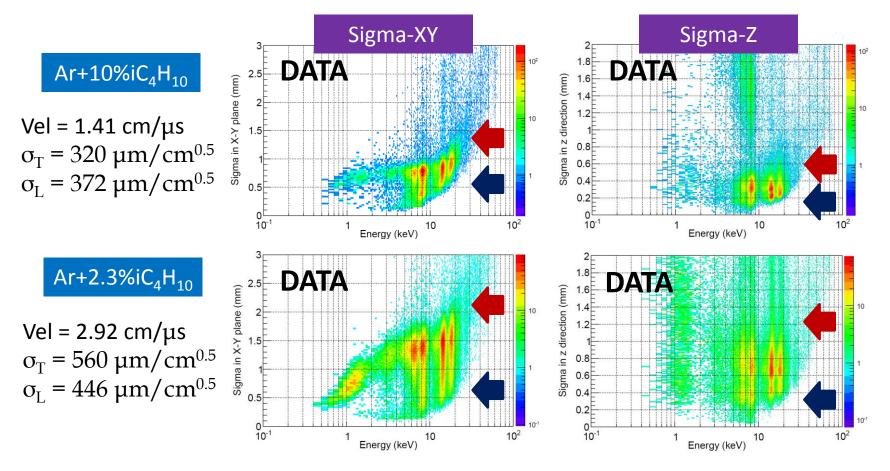
Gas system operations: recirculation



B6

F.J. Iguaz - Micromegas for axions

A cross-check: ²⁴¹Am+Al/Cu @ CAST-M18



- Several data-sets of ²⁴¹Am source + Al/Cu foils taken by CAST-M18 detector.
- CAST-MM geometry was modified to include an ²⁴¹Am source and a Cu/Al foil.
- Analysis results of data & simulation compared to validate the simulation.
- Energy spectra quite similar. Differences at high energy γ' s. DAQ saturation?

F.J. Iguaz - Micromegas for axions

- Clearly dependence of cluster features on diffusion effects and the z-position.
- Larger differences on width between top (red) and bottom (blue) events.

F.J. Iguaz - Micromegas for axions

Universidad

Zaragoza

.....

1547

B8



Status of IAXO-D0 background model

- IAXO-D0 geometry was implemented in Geant4.
- Shielding: 20 cm lead (passive) + 5 plastic scintillators (active).
- Work is still on going...
 - to validate the simulation of the detector response (update of REST code).

B9

to create the background model of IAXO-D0.

A cosmic muon interacting IAXO-D0 detector

F.J. Iguaz - Micromegas for axions

S. Aune et al., JINST 9 (2014) P01001 F.J. Iguaz et al., PoS(TIPP2014)295

Status of IAXO-D0 background model

Contribution	Background level at Rol (counts keV ⁻¹ cm ⁻² s ⁻¹)	Measurement	Status
Radon	~8 x 10 ⁻⁷	No N ₂ flux @ LSC setup	Removed
Al cathode	(5.2 ± 1.2) x 10 ⁻⁷	Cu/Al cathode @ LSC setup	Removed
Gamma flux	7 x 10 ⁻⁵ -> ~1 x 10 ⁻⁷ ?	No shielding @ CAST setup	Removed? 10 cm Pb
Muons	2 x 10 ⁻⁶ -> ~6 x 10 ⁻⁷	No active veto @ CAST setup	Not full coverage
Unidentified	1.1 x 10 ⁻⁷	20 cm lead @ LSC setup	

Potential background sources:

- Ar-39 isotope from the gas.
- Pb-210 from inner first cms of shielding.
- Cosmic muons.
- Cosmic gammas.
- F.J. Iguaz Micromegas for axions

Signal efficiency: 75%

- Intrinsic detector radioactivity?
- Neutrons?
- Radon?