The Euclid space mission and the origin of the accelerating Universe

Giuseppe Racca, Euclid Project Manager, ESA/ESTEG
CERN, Geneva
19th December 2016

Overview

> Intro about ESA ESA Corporate
> Science Projects: a short excursus
> Euclid programme implementation
> Main technology challenges
> Project Status

ESA facts and figures

- Over 50 years of experience
- 22 Member States
- Eight sites/facilities in Europe, about 2200 staff
- 5.2 billion Euro budget (2016)
- Over 80 satellites designed, tested and operated in flight

Purpose of ESA

"To provide for and promote, for exclusively peaceful purposes, cooperation among European states in space research and technology and their space applications."

Article 2 of ESA Convention

Member States

ESA has 22 Member States: 20 states of the EU (AT, BE, CZ, DE, DK, EE, ES, FI, FR, IT, GR, HU, IE, LU, NL, PT, PL, RO, SE, UK) plus Norway and Switzerland.

Seven other EU states have Cooperation Agreements with ESA: Bulgaria, Cyprus, Latvia, Lithuania, Malta, Slovakia and Slovenia. Discussions are ongoing with Croatia.

Canada takes part in some programmes under a longstanding Cooperation Agreement.

Activities

activity.
ESA is one of the few space agencies in the world to combine responsibility in nearly all areas of space

* Space science is a Mandatory programme, all Member States contribute to it according to GNP. All other programmes are Optional, funded 'a la carte' by Participating States.
space science

earth observation

launchers

telecommunications

Slide 5

ESA's locations

- ESA sites
- Offices
- ESA Ground Station + Offices
- ESA Ground Station
- ESA sites + ESA Ground Station

ESA budget for 2016

esa

ESA Activities and Programmes

Programmes implemented

 for other Institutional Partners

Total ESA budget
for 2016: 5.25 B€

ESA 2016 budget by domain

esa

Slide 8

Staff by nationality in 2014

Slide 9

ESA directors

ESA and the European space sector

ESA Member States finance 50% of the total public space spending in Europe. Because of the cooperation between ESA, EC and the national space agencies:

- the European space industry sustains around 35000 jobs;
- Europe is successful in the commercial arena, with a market share of telecom and launch services higher than the fraction of Europe's public spending worldwide;
- European scientific communities are world-class and attract international cooperation;
- research and innovation centres are recognised worldwide;
. European space operators (Arianespace, Eumetsat, Eutelsat, SES Global, etc.) are the most successful in the world.

ESA's industrial policy

About 85\% of ESA's budget is spent on contracts with European industry.

ESA's industrial policy:

= ensures that Member States get a fair return on their investment;

- improves competitiveness of European industry;
- maintains and develops space technology;
- exploits the advantages of free competitive bidding, except where incompatible with objectives of the industrial policy.

Birth of commercial operators

ESA's 'catalyst' role

ESA is responsible for R\&D of space projects. On completion of qualification, they are handed to outside entities for production and exploitation. Most of these entities emanated from ESA.

Meteorology: Eumetsat
Launch services: Arianespace
Telecomms: Eutelsat and Inmarsat

ESA Council

The Council is the governing body of ESA.
It provides the basic policy guidelines for ESA's activities. Each Member State is represented on the Council and has one vote.

Every two to three years, Council meets at ministerial level ('Ministerial Council') to take key decisions on new and continuing programmes and financial commitment.

The ESA Council at ministerial level also meets together with the EU Council to form the European 'Space Council'.

O SCIENCE

O ESA's pioneers of space science (1)

- Hipparcos (1989-93) first comprehensive star-mapper
- IUE (1978-96) Iongest-lived orbital ultraviolet observatory
- Giotto (1986) first close flyby of a comet nucleus
- Ulysses (1990-2008) first spacecraft to fly over Sun's poles
- ISO (1995-8) first European infrared observatory
- SMART-1 (2003-6) first European mission to the Moon

Slide 17

O ESA's pioneers of space science (2)

- Planck (2009-13) detecting first light of Universe and looking back to the dawn of time
- Herschel (2009-13) unlocking the secrets of starbirth and galaxy formation and evolution
- Venus Express (2005-15) first global investigation of dynamic atmosphere of Venus

Venus Express

O Huygens

First landing on a world in the outer Solar System

On 14 January 2005, ESA's Huygens probe made the most distant landing ever, on Titan, the largest moon of Saturn (about 1427 million km from the Sun).

Slide 19

O Rosetta

First rendezvous, orbit and soft-landing on a comet.

On 6 August 2014, ESA's Rosetta became the first spacecraft to rendezvous with a comet and, on 12 November, its Philae probe made the first soft-landing on a comet and returned data from the surface.

Today's Science missions (1)

- Hubble (1990-) orbiting observatory for ultraviolet, visible and infrared astronomy (with NASA)
. SOHO (1995-) studying our Sun and its environment (with NASA)
- XMM-Newton (1999-) solving mysteries of the X-ray Universe
- Cluster (2000-) studying interaction between Sun and Earth's magnetosphere
- Integral (2002-) observing objects simultaneously in gamma rays, X-rays and visible light

Today's Science missions (2)

- Mars Express (2003-) studying Mars, its moons and atmosphere from orbit
- Rosetta (2004-) the first long-term mission to study and land on a comet
- Gaia (2013-) mapping a thousand million stars in our galaxy
- LISA Pathfinder (2015-) testing technologies to detect gravitational waves

Slide 22

O Upcoming missions (1)

- BepiColombo (2017) a satellite duo exploring Mercury (with JAXA)
- Cheops (2018) studying exoplanets around nearby bright stars
- Solar Orbiter (2018) studying the Sun from close range
" James Webb Space Telescope (2018) studying the very distant Universe (with NASA/CSA)

Slide 23

O Upcoming missions (2)

- Euclid (2020) probing 'dark matter', 'dark energy' and the expanding Universe
" JUICE (2022) studying the ocean-bearing moons around Jupiter
- Plato (2024) searching for planets around nearby stars
- Athena (2028) space telescope for studying the energetic Universe
. Gravitational wave observatory (2034) studying ripples in spacetime caused by massive objects in the Universe

O Science operations

ESAC (near Madrid, Spain) is ESA's centre for science operations.

ESAC hosts ESA's Science Operation Centre (SOC) for ESA astronomy and Solar System missions.

Science operations include the interface with scientific users, mission planning, payload operations and data acquisition, processing, distribution and archiving.

The scientific archives for the majority of ESA's science missions are kept here so that researchers have a single 'entry point' for accessing the wealth of scientific data.

Euclid in the Cosmic Vision 2015-2025

ESA UNCLASSIFIED - For Official Use

* Science Magazine 2005: What don't we now? * $1^{\text {st }}$ Priority: What is the Universe made of? * In 2005 ESA Space Science Advisory Committee prepared Cosmic Vision 2015-202 * 4 themes were defined

* Theme 4 question: How did the Universe originate and what is it made of?
* Investigate the nature and origin of the Dark Energy that is accelerating the expansion of the Universe.

Selection process

* 2007: two "dark energy missions" proposals were received from the community: Dune, a wide field imager and SPACE, a new near-infrared all-sky cosmic surveyor;
* 2009: Euclid was born, a visible/near-infrared survey of all galaxies and clusters of galaxies out to a $z \sim 2$. Euclid was in competition with other 5 missions;
* 2010: Euclid, Plato (to study frequency of planets around other stars, including terrestrial planets in a star's habitable zone) and Solar Orbiter (closest look at our Sun, approaching 62 solar radii) were selected;
* 2011: Solar Orbiter and Euclid were selected for implementation;
* 2012: Euclid mission is adopted (blueprint completed) for launch in 2020. Top-level science management principles of the mission, main organisational units, roles and responsibilities of ESA, the Euclid Consortium (EC) funded by the Member States, and the scientific community at large are established in the Science Management Plan SMP.
* While ESA D/SCI retains overarching responsibility for all aspects of the mission, EC provides the two instruments (with contribution by ESA and NASA) and part of Science Ground Segment and the Euclid Science Team oversees the preparations and execution of scientific operations, and endorses distribution of the data products to the community via the Euclid Legacy Archive.

Original organisational structure

Mission Implementation Process

* Science Management Plan defined the roles and responsibilities;
* Science Requirements Document (SciRD) approved by Science Team defines:
* Top level requirements for Weak Lensing;
* Top level requirements for Galaxy Clustering;
* Instrument requirements for WL and GC;
* Survey requirements (Wide, Deep and Calibration);
* External Data (ground observation).

```
- Science Requirements (SciRD)
- Science Management Plan (SMP)
- Definition Phase Baseline Concept (Euclid Red Book)
- Euclid Mission framework agreement
- Euclid Multilateral Agreement (MLA)
- Euclid Memorandum of Understanding (MoU)
- Agency Standards:
- ESA/ADMIN/IPOL(2007)11 (Applicability of ESA standards)
- ESA/ADMIN/IPOL(2008)2 (Space Debris mitigation)
```


Inputs

Mission Requirements Document (MRD)
 EUCL-EST-RD-1-001

The MRD contains the toplevel Euclid requirements under responsibility of the ESA project.

Euclid Requirements definition (1/3)

MRD top-level functional requirements

Functions	Architecture		Mission	Agency Constraints
Perform Wide Survey: 15,000 deg2	Space Segment	Single Telescope	Science Lifetime 6 years	ECSS Standards
Perform Deep Survey: 40 deg2		VIS Instrument provided by EC	L2 orbit	Decommissioning
Visible imaging		NISP Instrument provided by EC		Passivation
Near-Infrared Slitless Spectroscopy	Ground segment	MOC at ESOC		
Near-Infrared Photometry		SOC at ESAC		
Provide mission data products in a Euclid Legacy Archive (ELA)		EC-SGS GSN with X \& K-band capability		
	Launch Segment	Soyuz Launcher		

MRD Main Weak-Lensing Science requirements

Euclid Requirements definition (3/3)

MRD Main Galaxy Clustering Science requirements

Galaxy sample selection		Spectroscopic red-shift determination	
Survey size	15,000 deg ${ }^{2}$	Redshift (z) precision, uncertainty and systematic offset (see SciRD)	Wavelength error
	85\% survey efficiency		NISP-S Imaging of the NISP-P field with sensitivity $m_{A B}=24(5 \sigma)$
Galaxy redshift distribution	Flux limit other wavelenghts: $3.6 \times 10^{-16} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	Redshift catastrophic error fraction$f_{\text {cat }}<0.2 \%$	Spectral resolution > 250
	Completeness > 45\%		Z measurement purity > 80\%
Median redshit$0.7<Z<2.05$	NISP-P spectral range 1100-2000nm	And $f_{\text {cat }}$ knowledge better than 1%	Subsample with purity > 99\%
			External data under EC responsibility

Euclid Requirements Flow-down

Euclid Product Tree

Euclid Spacecraft Industrial Consortium

* PLM (telescope and cold compartment) contract with Airbus D\&S of Toulouse was kicked off in Jan 2013;
* Prime (including Service module) contract with Thales Alenia Space of Turin was kicked off in Jul 2013;
* Pre-development of HgCdTe detectors with Teledyne Imaging Sensors of Camarillo (CA) was performed in 2012-2015;
* Pre-development and flight production of the CCD with e2v of Chalmsford kicked off in 2012;
* Few more smaller industrial contracts are on going;

VIS instrument industry/institute consortium

NISP instrument industry/institute consortium

esa

The Euclid Space Mission | Project Overview | G.D.Racca| CERN, 19th December 2016 || Slide 14

Industrial Geographical distribution

Moog - RW study
ADSNL - AOCS Core Team, AOCS SW ADSNL - PLM struts \& radiator Terma - CCS
Celestia - TTC SCOE parts
Spacebel - ASW AMOS - M2 M3 polishing AMOS - FOM, Collimator Qinetiq - PLM baffle TAS-B - M2M PS, TWTAs

McGinley - FDIR System support E2V - FGS CCD
SciSys - CFDP validation MOOG - MPS/RCS miscellanea

Celestia- PLM STMTG COE parts

Sener - AOCS Lead, MGSE batch 2
Sener - PLM M2M
ALTER - CPPA
CRISA - FGS EU
ADS CASA - STCS subsystem

Ruag - CDMU I/O, MGSE batch 2, PLM TH HW
Siemens - TTC Scoe, PLM TMTC SCOE
Siemens - Pwr SCOE support

ADS - PLM lead REOSC - AC flat, M1 polishing Boostec - Sic Structures Saft - battery
TAS-F - S/C Test facility
Ruag - SSH structure
Ruag - PLM struts \& radiator study
Apco - SVM MGSE batch 1
Apco - PLM MGSE batch 1
Apco - PLM VIS radiator Schott - Folding mirrors coating Schott - Dicroic study Syderal - MPA, ADPME

GMV - SVF support

 HPS - STCS support, SSH TCS HPS - PLM MGSE Support Active Space - STCS MGSE Active Space - KTX GSE Altran - STCS Support Edisoft - ASW support Deimos - AOCS ESE ISQ - PLM Struts supportTAS-E - TTC lead, RFDA
GTD : ASW support
Mersen - PLM Sic Tools
Navair - SVM harness MAIT

TAS-I - Prime, DST, HGA Core team
TAS-I - coarse rate sensor
Selex - FGS lead, MPA lead, PVA

ESA UNCLASSIFIED - For Official Use
The Euclid Space Mission | Project Overview | G.D.Racca| CERN, 19th December 2016 || Slide 15

Mission Design

* Soyuz 2.1B + Fregat ascent trajectory and direct SEL2 transfer orbit;
* Y-Z plane of the co-rotating frame;
* Maximum Sun-spacecraft-Earth angle of 330-36;
* Step-and-stare scanning of the sky;
* Telescope LOS is kept perpendicular to the Sun direction ($87^{\circ}<\mathrm{SAA}<121^{\circ}$)
* Launch window constraints: perigee velocity, SSE angle, no eclipses, telescope vs. sun direction $\leq 30^{\circ}$.

Survey Design

* Instruments observation sequence of one field =>
* $|b|>30^{\circ}$
* Minimise SAA variations;
* Minimise zodiacal light => high ecliptic latitude;
* Low galactic extinction;
* Specific pointed calibration (high star density);
* Deep survey observation;

area covered by the wide survey (ecliptic coordinates, colour coding follows the epoch of observation). The empty regions reflect the ecliptic equator and the galaxy plane.
Left: growth curve, the increase of the area covered by the wide survey as a function of time.

The Euclid Space Mission | Project Overview | G.D.Racca| CERN, 19 December 2016 | Slide 17

틈
팸믐

Ground Segment - OGS + SOC functions

esa

Legend: \qquad ESAC Responsibility \square EC ResponsibilityMission Ops GS (ESOC)Industry Responsibility

Operations Ground Segment

* Design, implementation, validation and operation of the MOC elements of the ground segment
* Support to Project in all development phases
* Operations of the space segment (spacecraft and instruments) during LEOP, Commissioning and Routine Phase

Science Operations Centre

* Interface between the Mission Operations Centre and the other elements of the SGS, providing all necessary mission data to the SDCs.
* Interface to the Scientific Community for the final validated science products once released through the archive system developed at ESAC.
* Overall design and engineering of the SGS, working closely with the System Team.
* It manages the execution and monitoring of the Sky Survey.

Ground Segment - SGS-EC functions

esa

* The Instrument Operation Teams (IOTs), responsible for the maintenance of the instruments production of weekly instrument reports.
* The Science Data Centres (SDCs), host the IOC's, take Level 1 and produce Level 2. Science Processing to obtain Level3.
Reprocess external data: Level E.

Euclid Main Challenges (requirements)

* Derive directly from the Science requirements (GC and WL probes):
* Survey area > 15,000 deg^{2}, in 6 years (programmatic + science);
* Galaxy density, wavelength coverage, PSF FWHM;
* NIR photometry, error, PSF EE;
* NIR spectroscopy, density, flux limit, completeness, purity;
* Tight control of systematic errors (10^{-7}) and correct modeling
* For WL the amplitude of the signal needs to be measured accurately as a function of redshift:
*PSF ellipticity < 0.15 and stability < 2•10-4
* PSF profile: FWHM <180 mas, R ${ }^{2}<0.057$ as 2 and stability $<10^{-3}$
* Minimum stray light ($\sim 20 \%$ of zodiacal light)
* Contrast ratio to ghost < 10-4
* For GC power spectrum the statistical reconstruction of large-scale structure requires the slitless spectrometer to achieve:
* Redshift accuracy < 0.001 (1+z)
* PSF size EE80 < 600 mas
* Subsample of galaxies > 160,000 with 99\% purity

Euclid Main Challenges (solutions)

* Large field of view three mirrors anastigmatic (Korsch) telescope (1.2m primary);
* All SiC optics and structure for maximum stability;
* Cold instrument compartment (140K)

ESA UNCLASSIFIED - For Official Use
The Euclid Space Mission | Project Overview | G.D.Racca| CERN, 19th December 2016 || Slide 22
= ॥ッ

M1

SiC parts - Hardware overview

FOM1 support

FOM3 support M3 support

NIR detectors and CCD's

* NIR HgCdTe detectors (Teledyne), 2040X2040 pixels, $18 \times 18 \mu \mathrm{~m}, 2.3 \mu \mathrm{~m}$ cut-off, $\mathrm{FW}=130,000 \mathrm{e}-$:
* QE $\geq 90 \% 1 \mu \mathrm{~m}$ to $2.2 \mu \mathrm{~m}$
* Spectroscopic noise ≤ 7 e- over 560 s
* Photometric noise ≤ 5 e- over 60 s
* Dark current ≤ 0.005 e-/s/px
* Linearity $\leq 0.7 \%$ between 6 ke- and 60 ke-
* CCD (e2v), 4096×4132 pixels, $12 \times 12 \mu \mathrm{~m}$
 FWC=175,000e-
* 4 read-out nodes (in corners)
* SiC package extremely tight flatness
* QE $\geq 70 \%$ 500nm to 850 nm (95% at 650 nm)
* PRNU much better than 2\% at all spatial scales
* Noise better than required 3.6 e- at 70 kpix/s

Spacecraft exceptional stability

*PSF $F_{\text {System }}=P S F_{T e l} \otimes P S F_{\text {LOS }} \otimes P S F_{F P A}$

* AOCS performance over one dither exposure:
* APE $<2,5 / 7,5$ as around transverse/LoS axis (1б)
* RPE < 25/500 mas around transverse/LoS axis (1б)
* Need Need of a dedicated FGS Star Catalogue (19 mag);
* FGS performance solves by design STR to VIS thermomechanical deformation problems;
* FGS Absolute Attitude Measurement Error @ 1Hz:
* 0.6 as at 99.7% CL around transverse axis
* 8.7 as at 99.7% CL around telescope boresight axes
* FGS Relative Attitude Measurement Error @ 1Hz over 700s:
* 0.03 as at 99,7\% CL around transverse axis
* 2.1 as at 99.7\% CL around telescope boresight axes
* Micropropulsion Noise $\leq 1 \mu \mathrm{~N} / \sqrt{ } \mathrm{Hz}$ for frequency $>0.01 \mathrm{~Hz}$,
* Structural-Thermal-Optical-Performance analysis:
* 500 MC cases: $\leq \mu \mathrm{m}$ and $\mu \mathrm{rad}$ level deformation

A short movie

Review Cycle at ESA

esa

* The project life cycle is clocked by Reviews at:
* Mission level
* Segment level (Space, ground, launcher)
* Element level (Platform, instruments)
* System/subsystem level
* Project Phases culminate in reviews:
* Phase A (PRR/SRR), B (PDR), C (CDR), D (QR/FAR), E (MCR/EMR);

* Allows periodic and independent check of tasks and objectives of the sequential phases;
* From PRR to PDR, reviews are "top down";
* From CDR to FAR, reviews are "bottom up";
* ESA is top level customer and directly organises reviews to "element" level;
* External entities may also participate (e.g. CERN with Science Ground Segment)

Euclid - Schedule Overview

Overview mission timeline

Major milestone recently passed: SGS TK1, GSRqR, NISP I-CDR
$1^{\text {st }}$ half 2017 project milestone: VIS I-CDR's, Inf-Ch\#7, Sci-Ch\#3, SPV KO

