Expressing Parallelism with
ROOT

CHEP 2016

This Talk

ROQOT helps scientists to express parallelism
* Adopting multi-threading (MT) and multi-processing (MP) approaches
* Following explicit and implicit paradigms

- Explicit: give users the control on the parallelism’s expression

- Implicit: offer users high level interfaces, deal with parallelism internally

* Explicit parallelism and protection of resources
= * General purpose parallel executors

* Implicit parallelism and processing of datasets
* R&Ds: functional chains and ROOT-Spark

Explicit parallelism and

protection of resources

Protection of Resources
A single directive for internal thread safety

ROOT: :EnableThreadSafety ()
* Some of the code paths protected:

- Interactions with type system and interpreter (e.g. interpreting code)

- Opening of TFiles and contained objects (one file per thread)

New utilities, none of which in the STL:
* ROOT:TThreadedObject<T>
- Separate objects in each thread, lazily created, manage merging
- Create threaded objects with ROOT::MakeThreaded<T>(c’tor params)
* ROOT:TSpinMutex
- STL interface: e.g. usable with std::condition_variable
* ROOT:TRWSpinLock

- Fundamental to get rid of some bottlenecks

Programming Model

ROOT: :EnableThreadSafety();
auto ts_h = ROOT::MakeThreaded<TH1F>("myHist", "Filled in parallel", 128, -8, 8);

auto fillRandomHisto = [&](int seed = 0) {

TRandom3 rndm(seed); . .
auto histogram = ts_h.Get(); Fill histogram randomly

(auto i : ROOT::TSeql(1000000)) { from multiple threads
histogram->Fill(rndm.Gaus(9, 1));
}
b

auto seeds = ROOT::TSeqI(1, 5);
std: :vector<std::thread> pool;

(auto s : ROOT::TSeql(seeds)) pool.emplace_back(fillRandomHisto, s);

(auto & t : pool) t.join();
auto sumRandomHisto = ts_h.Merge();

General Purpose Parallel

Executors

Parallel Executors

* ROOT:TProcessExecutor and ROOT:TThreadExecutor
- Same interface: ROOT:: TExecutor
- Inspired by Python’s concurrent.futures.Executor D,
* Map, Reduce, MapReduce patterns available
* ROOT:TProcessExecutor:additional methods to process trees!
- Interplay with TTreeReader —.J
* Adopted threading library: TBB 33

- Not visible to the user, share pool with experiments’ frameworks

Programming Model

ROOT: : TProcessExecutor mpe(4); Fill histogram randomly

auto fillRandomHisto = [](int seed) { from multiple threads
auto h = TH1F("myHist", "Filled in parallel", 128, -8, 8);
TRandom3 rndm(seed);
(auto i : ROOT::TSeqI(1000000)) {
h=>Fill(rndm.Gaus(0, 1));

h;
};

ROOT: :ExecutorUtils: :ReduceObjects<TH1F> rf;
auto sumHisto = mpe.MapReduce(fillRandomHisto, ROOT::TSeqI(10), rf);

Return type inferred from work-item signature

Implicit Parallelism in ROOT

Implicit Parallelism

* Cover common use cases: focus on dataset processing (T Tree’s)

e Two scenarios:

- Sequential processing of entries: parallel branches’ reading, decompression and

deserialization (independent from analysis/reconstruction code)

- Parallel processing of entries (needs thread-safe analysis code)

ROOT: :EnableImplicitMT ()

-Dimt=0ON for
configuring ROOT with
CMake!

10

Parallel Treatment of Branches

* Two modes for reading from trees:
- Access individual branches - TBranch::GetEntry()
- (De)activate some branches, access entire entries - T Tree::GetEntry

* Immediately useful with sequential (and thus possibly not thread-safe) analysis code
Example: PYROOT uses TTree::GetEntry

ROOT: :EnableImplicitMT();

auto file = TFile::0pen("http://root.cern.ch/files/hl/dstarmb. root");

TTree *xtree = nullptr;
file->GetObject('h42", tree);

(Longb4_t i = 0; tree->LoadEntry(i) >= 0; ++i) {
tree->GetEntry(i);

11

A Performance Figure

—— CMS Tree
" == ATLAS Tree

speedup

Hyperthr?eading

.................................

‘1'1'1'[TTT1'I'I TTT] l'l'r'f'['rfl'r['rr'|'1'

..................................

."__
1

1 1
2 3 4 5 6 7 8
threads

Intel i7-3770
4, 8 HT
Read, decompress, deserialize

e CMS: ~70 branches, GenSim data
* ATLAS: subset of ~200 branches, xAOD

entire dataset P

Multiple Entries In Parallel

ROOT:TTreeProcessor class, relies on TTreeReader
* One task per cluster scheduled: No duplication of decompression + deserialisation

auto ptHist = ROOT::MakeThreaded<TH1F>("pt_dist", "pt_dist", 64, 0, 4);
ROOT: : TTreeProcessor tp('tp_process_imt.root", "events");

auto myFunction = [&] (TTreeReader &myReader) {
TTreeReaderArray<R0O0T: :Math: : PxPyPzEVector> tracksRA(myReader, "tracks");
auto myPtHist = ptHist.Get();
(myReader.Next()) {
(auto& track : tracksRA) myPtHist->Fill(track.Pt());
}
b

tp.Process(myFunction);
auto ptHistMerged = ptHist.Merge();

A Performance Figure

o 14
};2 E —4x— |MT Tree Process
Ollglllilllsilllt13111150lll1i211114
threads
Dual Intel 5-2683V3 50 clusters in the dataset: unbalanced
|4 cores, 28 HT per CPU execution after 10 threads

Basic analysis of MC tracks
14

Two R&D Lines

Functional Chains R&D

* We are constantly looking for opportunities to apply implicit parallelism in ROOT
* “Functional Chains” R&D being carried out
- Functional programming principles: no global states, no for/if/else/break

- Analogy with tools like ReactiveX

* Goal: express selections on datasets via concatenation of transformations
- Alternative to traditional imperative approach
- Gives room for optimising operations internally

ROOT
f = ROOT.TFile("aliDataset. root")
aliTree = f.Events
dataFrame = TDataFrame(aliTree)

dataFrame.filter(sell).map(func2).cache().filter(sel3).histo('varl:var2').Draw('LEGO")

The ROOT-Spark R&D

* HEP data: statistically independent collisions
* Lots of success: PROOF the LHC Computing Grid S g
- Can we adapt this paradigm to modern technologies!? pQr

* Apache Spark: general engine for large-scale data processing
- Cluster management tool widely adopted in data-science community
- Scala, Java, R and Python support

Our idea:

|) Use Spark to process with Python + C++ libraries / C++ code JITted by ROOT

2) Cloud storage for software and data (CVMFS and EOY)
3) ldentical environment on user PC and Spark workers

17

A First Test

* CMS Opendata dataset
- Transverse momentum spectrum of AK5 generated jets
* Read ROOT files natively with PyROOT

* IT managed Spark cluster at CERN, CVMFS and EOS available on the nodes
* Driver is LXPLUS node, identical software setup via CVMFS

PROOF OF CONGEPT

SCALING? Spectrum

18

Bottomline and Outline

* ROAOQOT evolves: new utilities for expressing parallelism, a modern approach
- E.g. native interoperability with the STL, focus on the programming model
* General purpose MT and MP executors (e.g. map, mapReduce patterns)
» Utilities to facilitate explicit parallelism, complement STL
- ROOT is a “foundation library”
* Provide access to implicit parallelism
- Formulate solution using certain interfaces, ROOT takes care of the rest

* Find new opportunities for implicit parallelism, e.g. functional chains
* Continue exploring new technologies, e.g. Apache Spark and other runtimes

19

20

TTree 1/0 Objects

. Per-branch data
‘ Per-tree data

TBaskets

TLeaves
TBranches
TBranchElement

TFileCacheRead
(cluster)

TBaskets
TLeaves

TBranches
TBranchElement

21

