
Expressing Parallelism with 
ROOT

https://root.cern
 

D. Piparo (CERN) for the ROOT team 
CHEP 2016 



•  General purpose parallel executors
•  Implicit parallelism and processing of datasets
•  Explicit parallelism and protection of resources
•  R&Ds: functional chains and ROOT-Spark 

This Talk

All available in 
ROOT 6.08 !

2 

ROOT helps scientists to express parallelism
•  Adopting multi-threading (MT) and multi-processing (MP) approaches
•  Following explicit and implicit paradigms

-  Explicit: give users the control on the parallelism’s expression
-  Implicit: offer users high level interfaces, deal with parallelism internally

See also Status and Evolution of ROOT by A. Naumann in this track!   



General Purpose 
Parallel Executors



•  ROOT::TProcessExecutor and ROOT::TThreadExecutor
-  Same interface: ROOT::TExecutor
-  Inspired by Python’s concurrent.futures.Executor

•  Map, Reduce, MapReduce patterns available

4 

Parallel Executors

 ROOT::TProcessExecutor pe(Nworkers);
 auto myNewColl = pe(myLambda, myColl); 



https://threadingbuildingblocks.org 

•  Multiprocessing library: created a ROOT one
•  Threading library: Intel Threading Building Blocks

-  Not visible to the user, share pool with experiments’ frameworks
-  Build systems builds and installs it if requested and not available

-  Complement with other runtimes in the future

5 

A Word about the Runtime



Implicit Parallelism in ROOT



7 

•  Cover common use cases: focus on dataset processing (TTree’s)
•  Two cases:

1) Parallel processing of branches: reading, decompress and deserialise in parallel 
(independent from analysis/reconstruction code)
2) Parallel processing of entries (needs thread-safe analysis code)

Task-based parallelism, automatic partitioning/scheduling of work

Implicit Parallelism

ROOT::EnableImplicitMT()
-Dimt=ON for 
configuring ROOT with 
CMake!



Case 1) Parallel treatment of branches - read, decompress, deserialise in parallel
•  Immediately useful with sequential (and thus possibly not thread-safe) analysis code
•  Example: PyROOT uses TTree::GetEntry() !

Case 2) Parallel treatment of entries
ROOT::TTreeProcessor class, relies on TTreeReader
•  One task per cluster scheduled: No duplication of reading+decompression
•  See later for programming model example

8 

Processing Trees

No change in user code required



9 

 A Performance Figure

NUMA, 14 cores, 28 HT/CPU4 cores, 8 HT

Parallel treatment of branches
•  Only read, decompress, deserialize 

entire dataset

•  CMS: ~70 branches, GenSim data

•  ATLAS: ~200 branches, xAOD

Parallel treatment of entries
•  Basic analysis of MC tracks
•  50 clusters in total (cluster=task)
•  Unbalanced execution with more 

than 10 threads

~30 ms/evt 



Explicit parallelism and 
protection of resources



11 

A single directive for internal thread safety
•  Some of the code paths protected:

-  Interactions with type system and interpreter (e.g. interpreting code)
-  Opening of TFiles and contained objects (one file per thread)

New utilities, none of which in the STL:
•  ROOT::TThreadedObject<T>

-  Separate objects in each thread, lazily created, manage merging
-  Create threaded objects with ROOT::MakeThreaded<T>(c’tor params)

•  ROOT::TSpinMutex
-  STL interface: e.g. usable with std::condition_variable

•  ROOT::TRWSpinLock
-  Fundamental to get rid of some bottlenecks

Usable with any 
threading model

Protection of Resources
ROOT::EnableThreadSafety()



12 

Programming Model

Mix ROOT, modern C++ and 
STL for the good cause!

Manages one object per thread, transparently 

“Work item” 

More about the programming model in the backup slides!



Two R&D Lines



14 

•  We are constantly looking for opportunities to apply implicit parallelism in ROOT
•  “Functional Chains” R&D being carried out

-  Functional programming principles: no global states, no for/if/else/break
-  Analogy with tools like ReactiveX*, R dataframe, Spark

•  Goal: express selections on datasets via concatenation of transformations
-  Gives room for optimising operations internally

Can this be a successful model for our physicists?

Functional Chains R&D

Express analysis as a chain of 
functional primitives.

* https://reactivex.io 



15 

•  HEP data: statistically independent collisions
•  Lots of success: PROOF, the LHC Computing Grid

-  Can we adapt this paradigm to modern technologies?
•  Apache Spark: general engine for large-scale data processing

-  Cluster management tool widely adopted in data-science community
-  Written in Scala, bindings for Java, R and Python (our bridge to ROOT)

Our idea:
1) Use Spark to process with Python + C++ libraries / C++ code JITted by ROOT
2) Cloud storage for software and data (CVMFS and EOS) 
3) Identical environment on client and workers

The ROOT-Spark R&D

In collaboration with CERN 
IT-DB-SAS and IT-ST-AD



16 

•  CMS Opendata http://opendata.cern.ch/record/1640
-  Analyse kinematic properties of generated jets

•  Read ROOT files natively with PyROOT
-  Get back merged histograms

•  IT managed Spark cluster at CERN
-  Needed only CVMFS on the workers
-  Client is LXPLUS node

•  Easy setup: source a script 

We can run on CMS Opendata with ROOT exploiting an already 
existing Spark cluster

Our First Test

See also SWAN: Service for Web base ANalysis by E. Tejedor, Wed 11:45 Track 6  



17 

•  ROOT is evolving: utilities for expressing parallelism, a modern approach
-  ROOT namespace, new classes …

•  General purpose MT and MP executors (e.g. map, mapReduce patterns )
•  Utilities to facilitate explicit parallelism, complement STL

-  ROOT as a “foundation library”
•  Provide access to implicit parallelism

-  Formulate solution using certain interfaces, ROOT takes care of the rest

Bottomline and Outline

All this delivered in ROOT 6.08

The future:
•  Find new opportunities for implicit parallelism, e.g. functional chains
•  Continue exploring new technologies, e.g.  Apache Spark and other runtimes



18 

Backup



19 

Programming Model

Mix ROOT, 
modern C++ and 
STL seamlessly

Fill histogram randomly 
from multiple threads



20 

The work item 

Do work, retrieve result. 

Return type inferred from work-item signature 

Programming Model

Seamless usage of 
processes

Fill histogram randomly 
from multiple threads



21 

TTree I/O Objects


