Expressing Parallelism with
ROOT

CHEP 2016

This Talk

ROQOT helps scientists to express parallelism
* Adopting multi-threading (MT) and multi-processing (MP) approaches
* Following explicit and implicit paradigms

- Explicit: give users the control on the parallelism’s expression

- Implicit: offer users high level interfaces, deal with parallelism internally

—

* General purpose parallel executors
= ¢ Implicit parallelism and processing of datasets

* Explicit parallelism and protection of resources
* R&Ds: functional chains and ROOT-Spark

See also by A. Naumann in this track!

General Purpose

Parallel Executors

Parallel Executors

 ROOT:TProcessExecutor and ROOT: TThreadExecutor
- Same interface: ROOT:: TExecutor
- Inspired by Python’s concurrent.futures.Executor P

« Map, Reduce, MapReduce patterns available

ROOT:: TProcessExecutor pe(Nworkers);

auto myNewColl = pe(myLambda, myColl);

A Word about the Runtime

* Multiprocessing library: created a ROOT one

* Threading library: Intel Threading Building Blocks
- Not visible to the user; share pool with experiments’ frameworks
- Build systems builds and installs it if requested and not available

- Complement with other runtimes in the future

Implicit Parallelism in ROOT

Implicit Parallelism

Cover common use cases: focus on dataset processing (T Tree’s)

Two cases:
|) Parallel processing of branches: reading, decompress and deserialise in parallel
(independent from analysis/reconstruction code)
2) Parallel processing of entries (needs thread-safe analysis code)

Task-based parallelism, automatic partitioning/scheduling of work

-Dimt=ON for

ROOT: :EnableImplicitMT () éor:ﬁiu'ring ROQOT with
aKe:

Processing Trees

* Immediately useful with sequential (and thus possibly not thread-safe) analysis code
* Example: PyROOT uses TTree::GetEntry() !

ROOT: :EnableImplicitMT();

auto file = TFile::0pen("http://root.cern.ch/files/h1l/dstarmb. root");
TTree *xtree = nullptr; file->GetObject("h42", tree);

(Longb4_t i = 0; tree->LoadEntry(i) >= 0; ++i) tree->GetEntry(i);

Case 2) Parallel treatment of entries

ROOT:TTreeProcessor class, relies on TTreeReader

* One task per cluster scheduled: No duplication of reading+decompression
* See later for programming model example

"] == ATLAS Tree

—— CMS Tree

Hyperthr%eading

| 4cores,8|HT

1 [R B N N | L1 T N B | L1
2 3 4 5 6 7

Parallel treatment of branches

Only read, decompress, deserialize
entire dataset

CMS: ~70 branches, GenSim data
ATLAS: ~200 branches, xAOD

1
8
threads

speedup

—*— |MT Tree Process

f'ﬁﬁ"?"f?%ﬁéf@ffﬁé@ﬁﬁffIfﬁiﬁifﬁﬁflﬁﬁfﬁﬁﬁﬁﬁﬁZﬁﬁ"ffﬁﬁﬁfﬁﬁffﬁﬁﬁﬁIﬁﬁﬁffﬁﬁﬁﬁIﬁfﬁ].fﬁﬁﬁﬁﬁﬁfﬁf

""" “NUMA, 14 ¢ores, 28 HT/CPU™

Parallel treatment of entries

* Basic analysis of MC tracks

* 50 clusters in total (cluster=task)

e Unbalanced execution with more
than 10 threads

Explicit parallelism and

protection of resources

Protection of Resources

R \ R
807 7 Y UIAYIRTERIL YA TN -\ \\

A single directive for internal thread safety ROOT: : EnableThreadSafety ()
* Some of the code paths protected:

- Interactions with type system and interpreter (e.g. interpreting code)
- Opening of TFiles and contained objects (one file per thread)

New utilities, none of which in the STL:
* ROOT:TThreadedObject<T>
- Separate objects in each thread, lazily created, manage merging
- Create threaded objects with ROOT::MakeThreaded<T>(c’tor params)
* ROOT:TSpinMutex
- STL interface: e.g. usable with std::condition_variable
* ROOT:TRWSpinLock

- Fundamental to get rid of some bottlenecks
11

Programming Model

Manages one object per thread, transparently

~

ROOT: : TThreadedObject<TH1F> ptHist("pt_dist", "pt_dist", 128, 0, 64);
ROOT: : TTreeProcessor tp('"tp_process_imt.root", "events");

— “\Work item”

auto myFunction = [&] (TTreeReader &myReader) { &—
TTreeReaderArray<R0O0T: :Math: : PxPyPzEVector> trks(myReader, "tracks");
(myReader.Next()) {
(auto& trk : trks) myPtHist—>Fill(track.Pt());
}
};

tp.Process(myFunction);
auto ptHistMerged = ptHist.Merge();

More about the programming model in the backup slides!

Two R&D Lines

Functional Chains R&D

We are constantly looking for opportunities to apply implicit parallelism in ROOT
“Functional Chains” R&D being carried out

- Functional programming principles: no global states, no for/if/else/break

- Analogy with tools like ReactiveX*, R dataframe, Spark
Goal: express selections on datasets via concatenation of transformations

- Gives room for optimising operations internally

Can this be a successful model for our physicists?

ROOT
f = ROOT.TFile("aliDataset. root")
aliTree = f.Events
dataFrame - TDataFrame(aliTree)

dataFrame.filter(sell).map(func2).cache().filter(sel3).histo('varl:var2').Draw('LEGO")

14

The ROOT-Spark R&D

* HEP data: statistically independent collisions
* Lots of success: PROOF the LHC Computing Grid S g
- Can we adapt this paradigm to modern technologies? pr

* Apache Spark: general engine for large-scale data processing
- Cluster management tool widely adopted in data-science community
- Written in Scala, bindings for Java, R and Python (our bridge to ROOT)

Our idea:
|) Use Spark to process with Python + C++ libraries / C++ code JITted by ROOT
2) Cloud storage for software and data (CVMFS and EOS)

3) Identical environment on client and workers
15

CMS O

Our First Test

RN

CMS Opendata analysed with ROOT and Spark

pendata b
- Analyse kinematic properties of generated jets 3

Read ROOT files natively with PyROOT &
- Get back merged histograms 8t

IT managed Spark cluster at CERN o
- Needed only CVMFS on the workers
- Client is LXPLUS node

Easy setup: source a script -

”2 46810121416
Workers

We can run on CMS Opendata with ROOT exploiting an already
existing Spark cluster

See also SWAN: by E. Tejedor, Wed 11:45 Track 6 16

Bottomline and Outline

* ROQOQOT is evolving: utilities for expressing parallelism,a modern approach
- ROOT namespace, new classes ...
* General purpose MT and MP executors (e.g. map, mapReduce patterns)
» Utilities to facilitate explicit parallelism, complement STL
- ROOT as a‘“foundation library”
* Provide access to implicit parallelism
- Formulate solution using certain interfaces, ROOT takes care of the rest

The future:
* Find new opportunities for implicit parallelism, e.g. functional chains

* Continue exploring new technologies, e.g. Apache Spark and other runtimes
17

18

Programming Model

ROOT: :EnableThreadSafety();
ROOT: : TThreadedObject<TH1F> ts_h("myHist", "Filled in parallel", 128, -8, 8);

auto fillRandomHisto = [&](int seed = 0) {

TRandom3 rndm(seed); . .
auto histogram = ts_h.Get(); Fill histogram randomly

(auto i : ROOT::TSeqI(1000000)) { from multiple threads
histogram—>Fill(rndm.Gaus(9, 1));
}
};

std: :vector<std::thread> pool;

(auto s : ROOT::TSeqI(1, 5)) pool.emplace_back(fillRandomHisto, s);
(auto & t : pool) t.join();

auto sumRandomHisto = ts_h.Merge();

Programming Model

ROOT: : TProcessExecutor mpe(4); Fill histogram randomly

auto fillRandomHisto = [](int seed) { from multiple threads
auto h = TH1F("myHist", "Filled in parallel", 128, -8, 8);
TRandom3 rndm(seed);
(auto i : ROOT::TSeqI(1000000)) {
h=>Fill(rndm.Gaus(0, 1));

h;
};

ROOT: :ExecutorUtils: :ReduceObjects<TH1F> rf;
auto sumHisto = mpe.MapReduce(fillRandomHisto, ROOT::TSeqI(10), rf);

Return type inferred from work-item signature
20

TTree 1/0 Objects

. Per-branch data
‘ Per-tree data

TBaskets

TLeaves
TBranches
TBranchElement

TFileCacheRead
(cluster)

TBaskets
TLeaves

TBranches
TBranchElement

21

