The new ROOT interface: Jupyter Notebooks

E. Tejedor, D. Piparo, P. Mató

L. Mascetti, J. Moscicki, M. Lamanna

CERN

CHEP /10/2016

Prelude: The Notebook

Notebook: A web-based interactive computing interface and platform that combines code, equations, text and visualisations.

Many supported languages: Python, Haskell, Julia, R ... One generally speaks about a "kernel" for a specific language

In a nutshell: an "interactive shell opened within the browser"

Also called:

"Jupyter Notebook" or "IPython Notebook"

The Notebook: An Example

In a Browser

Text

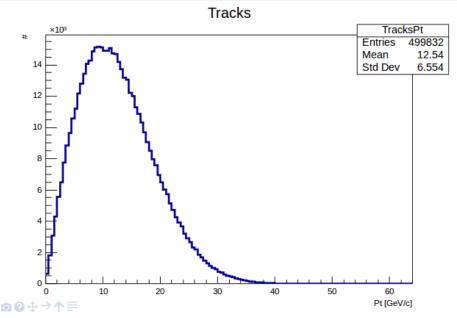
Code

Graphics

Access TTree in Python using PyROOT and fill a histogram

First import the ROOT Python module.

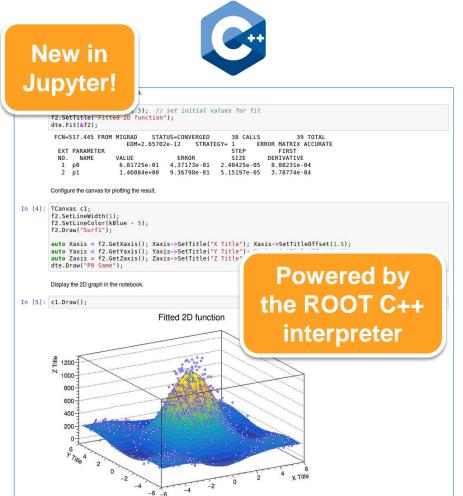
```
In [1]: import ROOT
%jsroot on
Welcome to JupyROOT 6.07/07
```

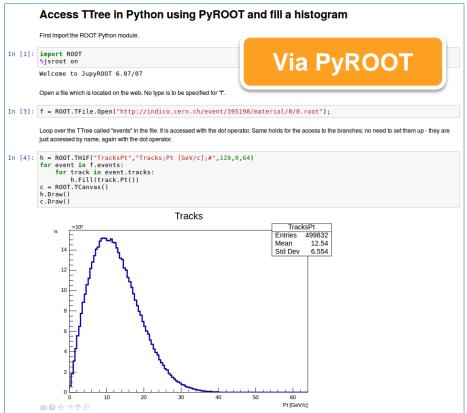

....,..

Open a file which is located on the web. No type is to be specified for "f".

```
In [3]: f = ROOT.TFile.Open("http://indico.cern.ch/event/395198/material/0/0.root");
```

Loop over the TTree called "events" in the file. It is accessed with the dot operator. Same holds for the access to the branches: no need to set them up - they are just accessed by name, again with the dot operator.


```
In [4]: h = R00T.TH1F("TracksPt","Tracks;Pt [GeV/c];#",128,0,64)
for event in f.events:
    for track in event.tracks:
        h.Fill(track.Pt())
    c = R00T.TCanvas()
h.Draw()
c.Draw()
```

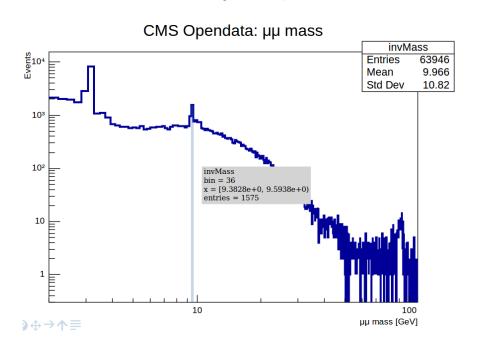



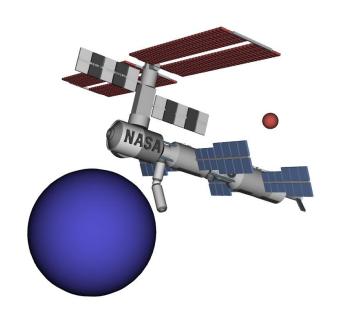
ROOT flavours for Jupyter

- ROOT has been fully integrated with the Jupyter technology
- Two language flavours (a.k.a. kernels) are available:

ROOT flavours for Jupyter (II)

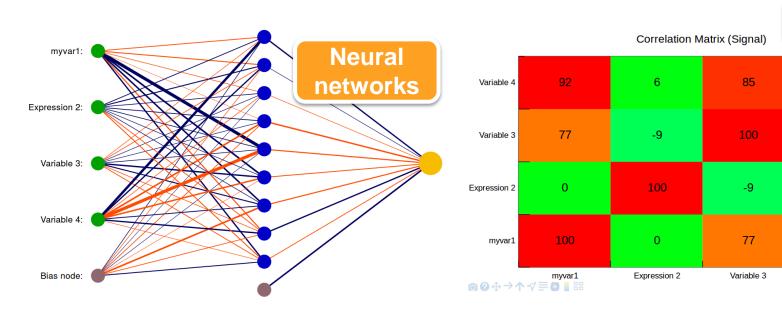
- C++ and Python can be mixed in the same notebook
 - Thanks to the ROOT type system


Interleave Python with C++: the %%cpp magic


```
In [1]: import ROOT
         Welcome to JupyROOT 6.07/03
         Thanks to its interpreter and type system, entities such as functions, classes and variables,
         created in a C++ cell, can be accessed from within Python.
                                                                          %%python also
In [2]:
         %%cpp
                                                                          available in C++
         class A {
         public:
                                                                             notebooks
             A() { cout << "Constructor of A!" << endl; }
         };
In [3]: a = R00T.A()
         Constructor of A!
```


Interactive Graphics: JSROOT

- Both of the presented flavours (C++, Python) allow to inline ROOT graphics in a notebook
- Two modes: static image and JavaScript visualisation
 - Activate JSROOT mode with %jsroot on
 - Interact with your plot: zoom, modify axis, inspect bins, ...



Interactive Machine Learning

- TMVA: machine learning toolkit in ROOT
 - Recently integrated with Jupyter as well: %jsmva on
 - JSROOT plots for input variables
 - Visualisation of neural networks and decision trees, DNN designer
 - Interactive training: stop a server computation
 - HTML output formatting

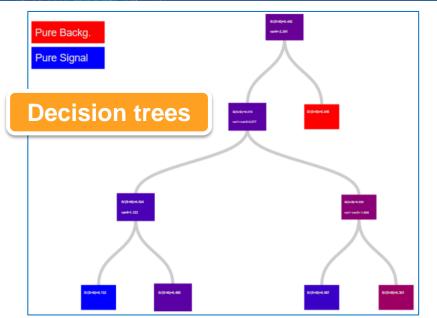
60

20

JSROOT

100

85


entries = 6

Variable 4

CorrelationMatrixSignal
x = Variable 4

Interactive Machine Learning (II)

DataSetInfo	Correlation matrix (Signal)						
DataSetInfo	Correlation matrix (Background)						
DataSetFactory	Dataset: tmva_class_example						
TFHandler_MLP	Variable	Mean	RMS	Min	Мах		
	myvar1	0.083989	0.36407	-1.0000	1.0000	HTML output	
	myvar2	0.0094778	0.27696	-1.0000	1.0000		
	var3	0.080279	0.36720	-1.0000	1.0000		
	var4	0.12986	0.39603	-1.0000	1.0000		
	Training Network						
	Elapsed time for training with 6000 events : 4.45 sec						
MLP	Dataset: tmva_class_example Evaluation of M					on of MLP on training sample (6000 events)	
	Elapsed time for evaluation of 6000 events : 0.0187 sec						
	Creating xml weight file: tmva_class_example/weights/TMVAClassification_MLP.weights.xml						
	Creating standalone class: tmva_class_example/weights/TMVAClassification_MLP.class.C						
	Write spe	Write special histos to file: TMVA.root:/tmva_class_example/Method_MLP/MLP					

Try It Out! - Local Machine

Follow some simple instructions in:

https://root.cern.ch/how/how-create-rootbook

and...

\$ root --notebook

This command:

- 1. Starts a local notebook server
- 2. Connects to it via the browser

Provides a ROOT C++ kernel and the rest of ROOTbook goodies

Try It Out! - SWAN

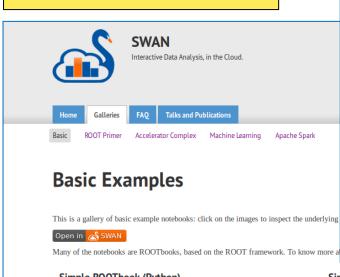
SWAN: Data analysis "as a service"

https://swan.cern.ch

Interface: Jupyter Notebooks Jupyter

Goals:

- Analysis only with a web browser
 - Platform independent ROOT-based data analysis



- Calculations, input and results "in the Cloud"
 - Easy sharing of scientific results: plots, data, code
- Centrally-distributed software: CVMFS
 - Integration with other analysis ecosystems: R, Python, ...

Notebook Gallery, Tutorials

Gallery of notebooks at swan.web.cern.ch

Fit Tutorials

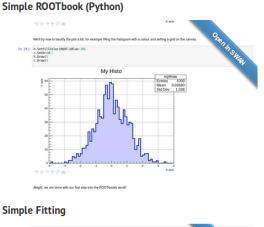
Tutorials

"Notebookised" tutorials at root.cern

These tutorials illustrate the main fitting features. Their names are related to the aspect which is treated in the code.

Files

file combinedFit.C


View Notebook Open in SWAN Combined (simultaneous) fit of two histogram with separate functions and some common parameters

file ConfidenceIntervals.C

View Notebook Open in SWAN Illustrates TVirtualFitter::GetConfidenceIntervals This method computes confidence intervals for the fitted function

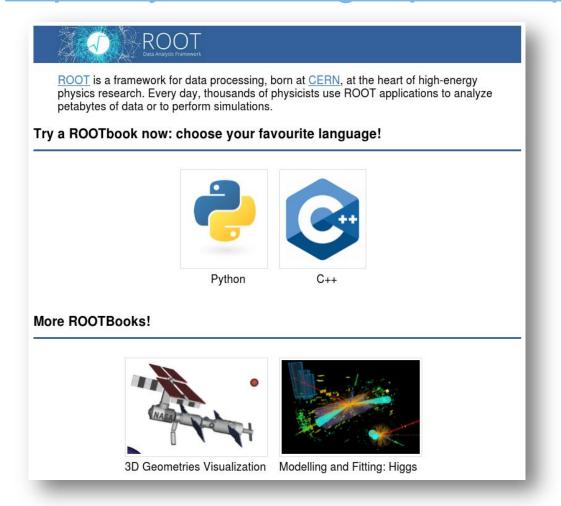
file ErrorIntegral.C

View Notebook Open in SWAN Estimate the error in the integral of a fitted function taking into account the errors in the parameters resulting from the fit.

Click to open in SWAN!

Summary

- ROOT integrated with Jupyter notebooks
 - C++ and Python notebook flavours
 - Inline graphics
 - JsROOT interactive visualisation
 - TMVA interactive features
 - Other goodies: tab completion, language mixing, ...
- All available in the next ROOT release (6.08)
- Accessible online thanks to SWAN
 - https://swan.cern.ch


Backup

Try It Out! - ROOT Binder

http://mybinder.org/repo/cernphsft/rootbinder

Anonymous access

View, Create and Run ROOTbooks!