
GeantV – An overview

Federico Carminati (CERN) for the GeantV development team



Estimates of resource needs for HL-LHC

▶ Simple model based on today’s computing models, but with expected HL-LHC 

operating parameters (pile-up, trigger rates, etc.)

▶ At least x10 above what is realistic to expect from technology with reasonably 

constant cost

Ian Bird 2

0

100

200

300

400

500

600

700

800

900

1000

Raw Derived

Data	estimates	for	1st	year	of	HL-LHC	(PB)

ALICE ATLAS CMS LHCb

0

50000

100000

150000

200000

250000

CPU	(HS06)

CPU	Needs	for	1st	Year	of	HL-LHC	(kHS06)

ALICE ATLAS CMS LHCb

Data:
• Raw 2016: 50 PB  2027: 600 PB
• Derived (1 copy): 2016: 80 PB  2027: 900 PB

CPU:
• x60 from 2016

Technology at ~20%/year will bring x6-10 in 10-11 years



Motivations
(even if you are familiar with them)

3

transistors

clock

power

ILP

10-1

1

10

102

103

104

105

106

70 75 80 85 90 95 00 05 10

107

The above is true 

only if we are here

We used to be here

We are now 

probably here

}



The Eight dimensions

 The “dimensions of performance”
• Vectors 

• Instruction Pipelining 
• Instruction Level Parallelism (ILP) 
• Hardware threading 

• Clock frequency 
• Multi-core 
• Multi-socket 

• Multi-node

Possibly running 

different

jobs as we do now is the

best solution

}
Gain in memory footprint 

and time-to-solution

but not in throughput

Very little gain to be 

expected and no 

action to be taken

Fine-grain parallelism: 

gain in throughput and 

in time-to-solution

Expected limits on performance scaling

SIMD ILP HW THREADS

THEORY 8 4 1.35
OPTIMISED 6 1.57 1.25
HEP 1 0.8 1.25

Expected limits on performance scaling (multiplied)

SIMD ILP HW THREADS

THEORY 8 32 43.2
OPTIMISED 6 9.43 11.79
HEP 1 0.8 1 OpenLab@CHEP12

4



Why is it so difficult?

▶ No clear kernel

▶ C++XX code generation / optimisation evolving rapidly

▶ Most of the technology coming out now

▶ Lack of standards

▶ Technological risk

▶ Physicist coders

▶ Fast evolving code

▶ Loose control on hardware acquisition

5



Why simulation?

▶ Simulation accounts for 50% of the WLCG cycles

▶ A large share of the simulation code is common to all 
users

▶ A single program dominates the scene for full 
detector simulation: GEANT4

▶ Parasitic time availability on supercomputers can be 
best exploited by simulation

▶ I/O problem can be factorized out 

● That is NOT to say that it can be ignored!

▶ Strong encouragement by CERN management to 

start this project

6



FNAL, BARC, UNESP and INAF (and 

SLAC)

▶ Strong encouragement from FNAL management and 
US DOE to start a project to re-engineer Geant4 for 
modern computing architectures.

● Having the same goals and sharing the same initial conclusions, we 
decided to join forces

▶ UNESP joined via an Intel IPCC

▶ INAF shares our interest in optimizing the code and 
has been a partner since the beginning of GEANTV

▶ BARC has a long history of developing and using 
simulation codes, and joined the project

▶ SLAC will collaborate with us to develop an 
independent module for neutron transport

7



… openlab & Intel

▶ openlab & Intel provide strong support for this (first?) 
large-scale effort to vectorize HEP code 

▶ GEANTV is one of the openlab applications

▶ Intel has granted GEANTV two IPCC 

8



Why not Geant4+?

▶ No hotspots (!)

▶ Virtual table structure very 

deep and complex (1990’s 

style)

▶ Codebase very large and 

non-homogeneous

▶ No criticism, but even the 

best things age

9

Extensive R&D convinced us that 

“vectorisation” of GEANT4 was not 

achievable without a major rewrite of the 

code



Parallelism everywhere again… but 

how to exploit it?

10



1

1

In some sense… but not entirely

(see later)



Hotspots?

▶ F.Carminati: The problem of our code is that 

there are no hotspots

▶ S.Jarp (openlab director): Well, create them 

and then you will be able to optimize them

12



HEP transport is mostly local !

geant-dev@cern.ch 13

ATLAS volumes sorted by transport time. The same 
behavior is observed for most HEP geometries.

50 per cent of 
the time spent in 
50/7100 volumes

• Locality not exploited by 

the classical transport

• Existing code “inefficient” 

(0.6-0.8 IPC)

• Cache misses due to 

fragmented code



Scheduler

Geometry 
navigator

Geometry 
algorithms

Physics

Basket of 

tracks

Basket of 

tracks

x-sections

Reactions

Dispatching

MIMD

SIMD

The initial ideas sounded easy

1

4



Challenges

▶ Overhead of particle lists should not offset SIMD gains

▶ Exploit the metal at its best, while maintaining portability

▶ Test from the onset on a “large” setup (LHC-like detector)
● Toy models tell us very little – complexity is the problem

15

Scheduler

CPU GPU Phi XXXAtom



Redesigning simulation

▶ Maintain minimal coupling between components, in 
particular kernel and physics

▶ Re-use as much as possible the design of Geant4 
physics

● Avoid reinventing the wheel

▶ Streamlining by reducing the inheritance depth
● Replace whenever possible, virtual polymorphism with static 

(template) polymorphism

● Offer thin interfaces for direct calls to cross sections and final-state 
models

▶ Build into the design provision for biasing and fast 
simulation

16



The VecGeom story

▶ The first thing we set out to develop for GEANTV was a 

high performance geometry navigator

▶ Since USolid was not targeting SIMD, we decided to 

extend USolid with VecGeom

▶ This allows us to validate VecGeom with GEANT4 and 

ROOT applications

▶ … and provided us with an entirely new idea on how 

develop components for GEANTV

17



The casual modular designer

AKA fighting against ourselves

▶ Develop modular codes that 
can be used by GEANTV, 
GEANT4 and beyond

▶ Use GEANT4 to validate them, 
and, if appropriate, make them 
part of GEANT4

▶ This ensures a continuous 
benefit for the community 
coming from the project

▶ And this continues to move the 
goalpost for us 

18

GEANTV 

transport

GEANT4

VecGeom
USolid

EM
Neutron 

code



Redesigning simulation

▶ Design components that can be used by different 

simulation codes

● Highest performance when used in vector mode

● Portable on CPUs and accelerators thanks to well identified code 

kernels (do NOT spread ifdefs in the code!)

● Make sure they can be used by GEANT4 and GEANTV at least

▶ Progressively build a set of tests as granular as possible 

taking the data from a database

● Introduce automatic alarms for failing tests

▶ Perform continuous integration and testing

● Nightly

● At every pull request

19



Timescales

▶ The lifecycle of a simulation package is decades

▶ Introducing changes requires close coordination with the 

customers

▶ In the case of LHC, anything new has to be delivered 

before 2019 to be even considered before the end of 

Run 3

● Need LS2 (2019-2020) for commissioning

▶ This requires planning & stable resource commitment

20



Planning & (wo)manpower

▶ We are indebted to funding agencies for the support and 

encouragement as early as 2012

▶ We have adjusted planning according to the skills we 

have at our disposal

● This in order to maximize the results of the “proof of concept”

▶ The “modular development” and staged approach, and 

the “common house structure” (GEANT4 & GEANTV) at 

CERN and FNAL (soon SLAC – neutron package) allows 

us to leverage GEANTV effort for the good of GEANT4 

and reciprocally

▶ More on personpower and planning at the end…

geant-dev@cern.ch 21


