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Estimates of resource needs for HL-LHC

▶ Simple model based on today’s computing models, but with expected HL-LHC 

operating parameters (pile-up, trigger rates, etc.)

▶ At least x10 above what is realistic to expect from technology with reasonably 

constant cost
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Data:
• Raw 2016: 50 PB  2027: 600 PB
• Derived (1 copy): 2016: 80 PB  2027: 900 PB

CPU:
• x60 from 2016

Technology at ~20%/year will bring x6-10 in 10-11 years



Motivations
(even if you are familiar with them)
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The Eight dimensions

 The “dimensions of performance”
• Vectors 

• Instruction Pipelining 
• Instruction Level Parallelism (ILP) 
• Hardware threading 

• Clock frequency 
• Multi-core 
• Multi-socket 

• Multi-node

Possibly running 

different

jobs as we do now is the

best solution

}
Gain in memory footprint 

and time-to-solution

but not in throughput

Very little gain to be 

expected and no 

action to be taken

Fine-grain parallelism: 

gain in throughput and 

in time-to-solution

Expected limits on performance scaling

SIMD ILP HW THREADS

THEORY 8 4 1.35
OPTIMISED 6 1.57 1.25
HEP 1 0.8 1.25

Expected limits on performance scaling (multiplied)

SIMD ILP HW THREADS

THEORY 8 32 43.2
OPTIMISED 6 9.43 11.79
HEP 1 0.8 1 OpenLab@CHEP12
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Why is it so difficult?

▶ No clear kernel

▶ C++XX code generation / optimisation evolving rapidly

▶ Most of the technology coming out now

▶ Lack of standards

▶ Technological risk

▶ Physicist coders

▶ Fast evolving code

▶ Loose control on hardware acquisition
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Why simulation?

▶ Simulation accounts for 50% of the WLCG cycles

▶ A large share of the simulation code is common to all 
users

▶ A single program dominates the scene for full 
detector simulation: GEANT4

▶ Parasitic time availability on supercomputers can be 
best exploited by simulation

▶ I/O problem can be factorized out 

● That is NOT to say that it can be ignored!

▶ Strong encouragement by CERN management to 

start this project
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FNAL, BARC, UNESP and INAF (and 

SLAC)

▶ Strong encouragement from FNAL management and 
US DOE to start a project to re-engineer Geant4 for 
modern computing architectures.

● Having the same goals and sharing the same initial conclusions, we 
decided to join forces

▶ UNESP joined via an Intel IPCC

▶ INAF shares our interest in optimizing the code and 
has been a partner since the beginning of GEANTV

▶ BARC has a long history of developing and using 
simulation codes, and joined the project

▶ SLAC will collaborate with us to develop an 
independent module for neutron transport
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… openlab & Intel

▶ openlab & Intel provide strong support for this (first?) 
large-scale effort to vectorize HEP code 

▶ GEANTV is one of the openlab applications

▶ Intel has granted GEANTV two IPCC 
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Why not Geant4+?

▶ No hotspots (!)

▶ Virtual table structure very 

deep and complex (1990’s 

style)

▶ Codebase very large and 

non-homogeneous

▶ No criticism, but even the 

best things age
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Extensive R&D convinced us that 

“vectorisation” of GEANT4 was not 

achievable without a major rewrite of the 

code



Parallelism everywhere again… but 

how to exploit it?
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1

In some sense… but not entirely

(see later)



Hotspots?

▶ F.Carminati: The problem of our code is that 

there are no hotspots

▶ S.Jarp (openlab director): Well, create them 

and then you will be able to optimize them
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HEP transport is mostly local !
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ATLAS volumes sorted by transport time. The same 
behavior is observed for most HEP geometries.

50 per cent of 
the time spent in 
50/7100 volumes

• Locality not exploited by 

the classical transport

• Existing code “inefficient” 

(0.6-0.8 IPC)

• Cache misses due to 

fragmented code



Scheduler

Geometry 
navigator

Geometry 
algorithms

Physics

Basket of 

tracks

Basket of 

tracks

x-sections

Reactions

Dispatching

MIMD

SIMD

The initial ideas sounded easy

1
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Challenges

▶ Overhead of particle lists should not offset SIMD gains

▶ Exploit the metal at its best, while maintaining portability

▶ Test from the onset on a “large” setup (LHC-like detector)
● Toy models tell us very little – complexity is the problem
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Redesigning simulation

▶ Maintain minimal coupling between components, in 
particular kernel and physics

▶ Re-use as much as possible the design of Geant4 
physics

● Avoid reinventing the wheel

▶ Streamlining by reducing the inheritance depth
● Replace whenever possible, virtual polymorphism with static 

(template) polymorphism

● Offer thin interfaces for direct calls to cross sections and final-state 
models

▶ Build into the design provision for biasing and fast 
simulation
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The VecGeom story

▶ The first thing we set out to develop for GEANTV was a 

high performance geometry navigator

▶ Since USolid was not targeting SIMD, we decided to 

extend USolid with VecGeom

▶ This allows us to validate VecGeom with GEANT4 and 

ROOT applications

▶ … and provided us with an entirely new idea on how 

develop components for GEANTV
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The casual modular designer

AKA fighting against ourselves

▶ Develop modular codes that 
can be used by GEANTV, 
GEANT4 and beyond

▶ Use GEANT4 to validate them, 
and, if appropriate, make them 
part of GEANT4

▶ This ensures a continuous 
benefit for the community 
coming from the project

▶ And this continues to move the 
goalpost for us 
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Redesigning simulation

▶ Design components that can be used by different 

simulation codes

● Highest performance when used in vector mode

● Portable on CPUs and accelerators thanks to well identified code 

kernels (do NOT spread ifdefs in the code!)

● Make sure they can be used by GEANT4 and GEANTV at least

▶ Progressively build a set of tests as granular as possible 

taking the data from a database

● Introduce automatic alarms for failing tests

▶ Perform continuous integration and testing

● Nightly

● At every pull request
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Timescales

▶ The lifecycle of a simulation package is decades

▶ Introducing changes requires close coordination with the 

customers

▶ In the case of LHC, anything new has to be delivered 

before 2019 to be even considered before the end of 

Run 3

● Need LS2 (2019-2020) for commissioning

▶ This requires planning & stable resource commitment
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Planning & (wo)manpower

▶ We are indebted to funding agencies for the support and 

encouragement as early as 2012

▶ We have adjusted planning according to the skills we 

have at our disposal

● This in order to maximize the results of the “proof of concept”

▶ The “modular development” and staged approach, and 

the “common house structure” (GEANT4 & GEANTV) at 

CERN and FNAL (soon SLAC – neutron package) allows 

us to leverage GEANTV effort for the good of GEANT4 

and reciprocally

▶ More on personpower and planning at the end…
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