
Sandro Wenzel (CERN), presented by Philippe Canal (FNAL)

for the VecGeom developers

G.Amadio (UNESP), J.Apostolakis (CERN), M.Bandieramonte* (CERN), Ph.Canal
(FNAL), F. Carminati (CERN), G.Cosmo (CERN), J.DeFine Licht* (CERN), A.Gheata
(CERN), M.Gheata (CERN), G.Lima (FNAL), T.Nikitina (CERN), R.Sehgal (BARC),
S.Wenzel (CERN), Y.Zhang* (KIT)

VecGeom – Geometry for GeantV, and …

* previously active

geant-dev@cern.ch October 2016

Outline
! VecGeom – An Introduction
! Motivations; Requirements; Development Approach; Components

! Shape Primitives — Status + Performance
! Feature overview
! Implementation status
! Reasons for speedup (highlights)

! Navigation Module — Status + Performance
! Overview of developments
! SIMD accelerated voxel structures
! Navigator code generation

! Summary, Future Plans
2

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Requirements + Goals
! Geometry is one of the most important pillars of simulation

! GeantV needs geometry library …

3

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Requirements + Goals
! Geometry is one of the most important pillars of simulation

! GeantV needs geometry library …
! able to handle baskets/vectors of tracks in all algorithmic parts (basket API)

3

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Requirements + Goals
! Geometry is one of the most important pillars of simulation

! GeantV needs geometry library …
! able to handle baskets/vectors of tracks in all algorithmic parts (basket API)

! designed to be used in heavily multi-threaded environments + allowing for rapid track
(context) switches

3

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Requirements + Goals
! Geometry is one of the most important pillars of simulation

! GeantV needs geometry library …
! able to handle baskets/vectors of tracks in all algorithmic parts (basket API)

! designed to be used in heavily multi-threaded environments + allowing for rapid track
(context) switches

! able to compile/run on accelerators (GPU, KNL, …)

3

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Requirements + Goals
! Geometry is one of the most important pillars of simulation

! GeantV needs geometry library …
! able to handle baskets/vectors of tracks in all algorithmic parts (basket API)

! designed to be used in heavily multi-threaded environments + allowing for rapid track
(context) switches

! able to compile/run on accelerators (GPU, KNL, …)

! Target performance and SIMD acceleration in all aspects

3

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Requirements + Goals
! Geometry is one of the most important pillars of simulation

! GeantV needs geometry library …
! able to handle baskets/vectors of tracks in all algorithmic parts (basket API)

! designed to be used in heavily multi-threaded environments + allowing for rapid track
(context) switches

! able to compile/run on accelerators (GPU, KNL, …)

! Target performance and SIMD acceleration in all aspects
! Target SIMD speedup by handling vectors of tracks

3

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Requirements + Goals
! Geometry is one of the most important pillars of simulation

! GeantV needs geometry library …
! able to handle baskets/vectors of tracks in all algorithmic parts (basket API)

! designed to be used in heavily multi-threaded environments + allowing for rapid track
(context) switches

! able to compile/run on accelerators (GPU, KNL, …)

! Target performance and SIMD acceleration in all aspects
! Target SIMD speedup by handling vectors of tracks

! Or SIMD speedup of complex algorithm handling one track (internal vectorization)
3

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Motivations illustrated …

4

Coordinate
Transform

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

Coordinate
Transform

CUDA

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

CUDA

CUDA

CUDA

CUDA

Coordinate
Transform

SIMD

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

SIMD

SIMD

SIMD

SIMD

CPU SCALAR API CPU SIMD API GPU/CUDA API
Multiple APIs +
Platforms !!

fro
m

 ty
pi

ca
l a

lg
or

ith
m

ic
 p

ip
el

in
e

in
 n

a
vi

ga
tio

n

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Motivations illustrated …

4

Coordinate
Transform

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

Coordinate
Transform

CUDA

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

CUDA

CUDA

CUDA

CUDA

Coordinate
Transform

SIMD

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

SIMD

SIMD

SIMD

SIMD

CPU SCALAR API CPU SIMD API GPU/CUDA API
Multiple APIs +
Platforms !!

fro
m

 ty
pi

ca
l a

lg
or

ith
m

ic
 p

ip
el

in
e

in
 n

a
vi

ga
tio

n

SIMD
ACCELERATION !!

BASKET SIMD
(EXTERNAL)

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Motivations illustrated …

4

Coordinate
Transform

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

Coordinate
Transform

CUDA

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

CUDA

CUDA

CUDA

CUDA

Coordinate
Transform

SIMD

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

SIMD

SIMD

SIMD

SIMD

CPU SCALAR API CPU SIMD API GPU/CUDA API
Multiple APIs +
Platforms !!

SI
M

D

A
C

C
SI

M
D

A

C
C

SI
M

D

A
C

C
SI

M
D

A

C
C

INTERNAL
ACCELERATION
OF
ALGORITHMS fro

m
 ty

pi
ca

l a
lg

or
ith

m
ic

 p
ip

el
in

e
in

 n
a

vi
ga

tio
n

SIMD
ACCELERATION !!

BASKET SIMD
(EXTERNAL)

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Challenges
! Substantial code management / duplication problem

! Support both traditional “scalar” track queries as well as “vector” queries

! Need to compile on a lot more platforms than previously

5

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Challenges
! Substantial code management / duplication problem

! Support both traditional “scalar” track queries as well as “vector” queries

! Need to compile on a lot more platforms than previously

! How to SIMD-vectorize reliably?

! How to vectorize for basket case?

! How to internally accelerate complicated shape primitives or scenes?

5

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Strategy To Address Challenges
! Promote use of components of generic templated code…

! to describe the algorithms once; instantiate them for different
scenarios (scalar; vector; GPU) to solve code duplication

! for performance via compile time code specialization

6

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Strategy To Address Challenges
! Promote use of components of generic templated code…

! to describe the algorithms once; instantiate them for different
scenarios (scalar; vector; GPU) to solve code duplication

! for performance via compile time code specialization

! Use explicit vectorization techniques through SIMD wrapper
libraries and VecCore abstraction

6

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Strategy To Address Challenges
! Promote use of components of generic templated code…

! to describe the algorithms once; instantiate them for different
scenarios (scalar; vector; GPU) to solve code duplication

! for performance via compile time code specialization

! Use explicit vectorization techniques through SIMD wrapper
libraries and VecCore abstraction

! Start from existing code from G4 / TGeo / USolids but review/
improve/redesign algorithms and memory layout

6

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Generic Programming Approach Illustrated

7

Coordinate
Transform

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

Coordinate
Transform

CUDA

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

CUDA

CUDA

CUDA

CUDA

DistanceToOut

Pick Hit
Candidate

DistanceToIn

Update Hit
Candidate

SIMD

SIMD

SIMD

SIMD

CPU scalar API CPU SIMD API GPU/CUDA API

template kernel instantiateinstantiate

template kernel

VecCore
API/Abstraction

Vc CUDA

Scalar …

Coordinate
Transform

SIMD

UMESIMD

implemented using

compile for
different
architectures;
platforms

Th
e

ar
ch

ite
ct

ur
al

 p
at

te
rn

 p
io

ne
er

ed
 in

 V
ec

G
eo

m

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom: Component Overview

8

Geometry Primitives (USolids)

Geometry Modeller To Build
Hierachical Detectors

Navigation Module

Box Tube Cone …

Navigators NavigationState

LogicalVolume PlacedVolume

Transformation …

V
ec

G
eo

m Scalar (C
PU + G

PU) A
PIs

M
ulti-Track (C

PU) SIM
D A

PIs

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

VecGeom and USolids
! USolids originated as a project before VecGeom with the goal to

unify “shape-primitives” development for Geant4/TGeo (AIDA
financed project)

! Today, VecGeom contains the USolid effort and is the natural
evolution of it

! USolids now is the geometry-primitive part of VecGeom, targeted
to unify “shape-primitive” development for Geant4/TGeo/Geant-V

! Many of the good results today are due to the original USolids
effort

9

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016 10

Geometry Primitives

geant-dev@cern.ch October 2016

Shape Primitives - Highlights
! Better algorithms compared to

previous implementations

! Basket interface with SIMD gains
(in simple geometry primitives)

11

0

400

800

1200

1600

DistanceToIn SafetyToIn Contains

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

NEEDS UPDATE
Time (units) measured for a tube segment

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Shape Primitives - Highlights
! Better algorithms compared to

previous implementations

! Basket interface with SIMD gains
(in simple geometry primitives)

11

0

400

800

1200

1600

DistanceToIn SafetyToIn Contains

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

NEEDS UPDATE
Time (units) measured for a tube segment

1

1

1 1

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Shape Primitives - Highlights
! Better algorithms compared to

previous implementations

! Basket interface with SIMD gains
(in simple geometry primitives)

11

0

400

800

1200

1600

DistanceToIn SafetyToIn Contains

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

NEEDS UPDATE
Time (units) measured for a tube segment

2

2
2

2

1

1

1 1

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Shape Primitives - Highlights
! Better algorithms compared to

previous implementations

! Basket interface with SIMD gains
(in simple geometry primitives)

11

0

400

800

1200

1600

DistanceToIn SafetyToIn Contains

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

NEEDS UPDATE
Time (units) measured for a tube segment

2

2
2

2

1

1

1 1

! Portable code (CPU and GPU/CUDA)

! Portable SIMD (SSE to AVX-512)

SSE AVX2 AVX-512 CUDA
DistanceToIn 1.57 2.07 2.51 tbd
Safety 2.37 2.50 3.56 tbd
Contains 1.72 2.17 3.36 tbd

Speedup of basket treatment (100000 tracks) against
VecGeom scalar CPU version

For details on AVX-512 and CUDA, see talk
on “Accelerators”

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Shape-Primitives Status: The ALICE Use-Case
! VecGeom now has all shape-primitives to satisfy needs of most HEP experiments (Xtruded added recently)

! For ALICE simulations (Pb-Pb), demonstrate that VecGeom offers very significant performance gains for the most CPU
relevant shape-primitives even in scalar track mode

12

Primitive Safety Dist2In Dist2Out Contains CPU%
Sum

Pgon 2.05 2.52 0.18 1.18 5.93

Xtru 0.56 0.68 0.20 1.81 3.25

Pcon 1.07 0.32 0.05 0.13 1.57
% of CPU cost of shape primitives (TGeo) in typical ALICE Pb-Pb

simulation

! Depending on experiment, a few % in CPU simulation cost gainable by switching to VecGeom primitives
(integration effort into G4/TGeo under way; see separate talk)

N
or

m
al

iz
ed

 ti
m

e

0

2

4

6

8

Safety Dist2In Dist2Out Contains 0.0

2.3

4.5

6.8

9.0

Safety Dist2In Dist2Out Contains

G4 TGeo VecGeom
0.0

1.8

3.5

5.3

7.0

Safety Dist2In Dist2Out Contains

 up to 9x faster than existing code

Pgon Xtru Pcon

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

New Features in VecGeom: Some Reasons For Improvements

! Algorithmic improvements

! Increased logical decomposition of kernels

! Increased pre-computation/caching

! Use modern C++; promote inlining; promote better compiler optimization

! Explicitly targeting inner SIMD acceleration where appropriate

! Template shape specializations

! Placement shape specializations

13

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Highlight I: Algorithmic Improvement Example
! Introduced Wedge class (half-space given by phi angle)

! Logical part of many shapes: tube-segments, cone-segments, pcon-segments

! Very simple but effective improvement over existing code in USolids and G4

14

„outside“„inside“
~n1

~n2

~a2

~a1

~P

'

! outside test for point P was so far
exclusively done using atan2

! now very fast test using only 2 dot
products of 2D vectors

! enormously speeding up
„Contains“, Safety, ... for many
primitives

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Highlight II: Internal Vectorization Example

15

0

0.001

0.002

0.003

0.004

0

0.003

0.005

0.008

0.01

USolids (original)

VecGeom noSIMD

VecGeom SIMD

HBHalf@CMS

small test
!VecGeom implements polyhedron

using internal vectorization (over
facets)

!demonstrated gain from internal
vectorization (typical factor 1.4 ish);
measured on AVX

! further speedup options exist by
using hierarchical SIMD accelerated
trees for polyhedron (see navigation
part later)

DistToIn DistToOut SafetyToOut

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016 16

Navigation Module

geant-dev@cern.ch October 2016

The Navigation Module

17

“Single-object”
problem

! Geometry primitives provide algorithms for simple ray - shape
problems (focus on individual object)

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

The Navigation Module

17

“Multi-object”
problems

“From individual objects to
scenes”

“toy” 2D representation

“Single-object”
problem

! Geometry primitives provide algorithms for simple ray - shape
problems (focus on individual object)

! Navigation module provides “multi-object” algorithms:
! provides next colliding object + distance in a “multi-object” scene
! provide object after the next boundary crossing
! simulations spend significant time in navigation module (ALICE ~30% with

TGeo, similar in CMS, …)

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

The Navigation Module

! Goals / Targets:

! Implement navigation system in VecGeom scaling to many
particles and many threads

! Implement acceleration structures for fast candidate
rule-out (scaling ~log(N) - see voxel techniques of G4/
TGeo)

! Target explicit SIMD acceleration
17

“Multi-object”
problems

“From individual objects to
scenes”

“toy” 2D representation

“Single-object”
problem

! Geometry primitives provide algorithms for simple ray - shape
problems (focus on individual object)

! Navigation module provides “multi-object” algorithms:
! provides next colliding object + distance in a “multi-object” scene
! provide object after the next boundary crossing
! simulations spend significant time in navigation module (ALICE ~30% with

TGeo, similar in CMS, …)

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Navigation Implementation Status
! Stateless navigator classes implementing abstract interface

! stateless for easy threading and switching tracked particles (big difference to G4; TGeo)

! abstract interface for convenient navigator specialization for various contexts

! State (“NavigationHistory”, etc.) is always carried in separate
NavigationState objects

! Templated (policy based) component-oriented implementation of
navigation; easy to add new navigation algorithms or extend existing one

! Support for navigation in assemblies

18

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

SIMD Acceleration of „Voxel“ Navigation
! Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, …

! How to combine this with SIMD paradigm?

19

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

SIMD Acceleration of „Voxel“ Navigation
! Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, …

! How to combine this with SIMD paradigm?

! Followed idea based on using (aligned) bounding boxes of geometry objects to filter good hit candidates

19

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

SIMD Acceleration of „Voxel“ Navigation
! Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, …

! How to combine this with SIMD paradigm?

! Followed idea based on using (aligned) bounding boxes of geometry objects to filter good hit candidates

19

=
„done in same CPU time“

ray bounding box
intersection test

ray bounding box
intersection test

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

SIMD Acceleration of „Voxel“ Navigation
! Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, …

! How to combine this with SIMD paradigm?

! Followed idea based on using (aligned) bounding boxes of geometry objects to filter good hit candidates

19

get SIMD gain from treating group of boxes in parallel

get scaling from hierarchies of bounding box groups (forming regular trees)

Inspired from e.g.: Shallow bounding volume hierarchies for fast SIMD ray tracing of incoherent rays + CPU ray-tracing libraries: Intel Embree, …

=
„done in same CPU time“

ray bounding box
intersection test

ray bounding box
intersection test

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Regular Tree Building via Clusterization
! Basic algorithm:

! let S == elements in SIMD register

! cluster objects into groups of S elements
(we use a variation of k-means)

! identify bounding boxes of grouped objects
as daughters of a tree node

! iterate this process

20

Clusterization and tree-buildinginitial final

Algorithm illustrated here for SSE (= 2 double numbers per register)

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

SIMD-Trees: Status + Local Benchmark
! Test approach on various detector volumes
! most important complex volumes from ALICE: ALIC + TPC_Drift
! a complex volume from CMS: MBWheel (~600 daughter volumes)

! Perform local navigation benchmark: One step + boundary crossing in
the given volume for 0.5 million different tracks

21

ALIC

TPC_Drift

MBWheel

Volume Daughters G4 TGeo VecGeom
(SSE4.2)

VecGeom
(AVX2)

ALIC (ALICE) 65 0.74 1.07 0.30 0.23

TPC_Drift
(ALICE) 641 14 2.2 1.2 0.9

MBWheel
(CMS) ~600 0.84 1.09 0.49 0.35

! Demonstrating overall speedup >2 compared to existing solutions + gain from SIMD unit
(see change SSE4.2 to AVX)

numbers are time in seconds; worst is red; best is blue

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Test/Global Benchmark of VecGeom Navigation
! Evaluate VecGeom (solids + navigation) on complex modules for multiple

steps

22

1 3

2

screen; pixel records
some scalar tracking
information (number of
boundaries crossed)
and can be converted
to an image

0
0

4

2

0

! XRay-Benchmarker:

! follow geantions
through geometry
pixel-by-pixel

! record some
information on screen

! Perfect for validating navigation algorithms (can do same with G4/TGeo)

! Good to get a global idea of library performance

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

[swenzel@pcalice121 newvgmbuild]$ grep "time" ITSSPDx100
 ROOT Elapsed time : 13.4979
 Geant4 Elapsed time : 37.5504
 VG Elapsed time : 1.372e-06
 VG (NEW) Elapsed time : 4.10331
[swenzel@pcalice121 newvgmbuild]$ grep "time" ITSSPDz200
 ROOT Elapsed time : 0.727566
 Geant4 Elapsed time : 0.685355
 VG Elapsed time : 1.29e-06
 VG (NEW) Elapsed time : 0.258022

Geantino-XRay: Global Performance

! Example for ALICE ITSSPD
module (to test assembly
implementation)

! Perfect agreement between G4/
TGeo/VecGeom

! Observe generally factors > 2.6x
speed improvement against other
packages

! Another indication of global
performance advantage of
VecGeom

23

view along z-direction zoom of white rectangle

N
or

m
al

iz
ed

 T
im

e

0.0
1.0
2.0
3.0
4.0

Along-z

G4 TGeo VecGeom

z-direction

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Geant-V: Switching TGeo to VecGeom
! Can globally benchmark VecGeom

within full Geant-V simulation (with
tabulated physics) by switching between
TGeo <-> VecGeom

! Gain a factor ~1.6 in simulation
runtime for CMS benchmark using
VecGeom

! Consuming considerably less
memory

! Gain from basket treatment still under
investigation (see next slide)

24

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Remaining Challenges

! Achieved SIMD acceleration in
various parts of full navigation

25

GlobalToLocal

DistanceToMother

CollisionDetection
WithDaughters

GetVolumeAfterBo
undary (=Relocate)

Track + Input NavigationState

Output NavigationState

BasketSIMD

BasketSIMD

Voxel/tree SIMD

Voxel/tree SIMD

PrepareOutstate
(copy)

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Remaining Challenges

! Achieved SIMD acceleration in
various parts of full navigation

! Full SIMD gain in basket mode
remains a challenge because some
algorithmic parts do not vectorize well
in basket mode and represent major
overheads

! We need to reduce these
overheads !

! Currently addressing these
challenges in R&D (see next slides)

25

GlobalToLocal

DistanceToMother

CollisionDetection
WithDaughters

GetVolumeAfterBo
undary (=Relocate)

Track + Input NavigationState

Output NavigationState

BasketSIMD

BasketSIMD

Voxel/tree SIMD

Voxel/tree SIMD

PrepareOutstate
(copy)

 m
aj

or
 o

ve
rh

ea
d

fo
r b

as
ke

t
SI

M
D

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Further R&D in Navigation Optimization
! Traditional navigation algorithms (in G4/TGeo world)

are still

26

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Further R&D in Navigation Optimization
! Traditional navigation algorithms (in G4/TGeo world)

are still

! … to generic
! runtime polymorphic approach
! e.g., no internal vectorization over primitives possible

26

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Further R&D in Navigation Optimization
! Traditional navigation algorithms (in G4/TGeo world)

are still

! … to generic
! runtime polymorphic approach
! e.g., no internal vectorization over primitives possible

! … poorly exploiting structural and static information
about a scene

! no usage of boundary touching relation between objects
! no fast lookup of global-local transformation for placed entities
! etc…

26

1 3

2

0

@
0 1 0
1 0 0
0 0 0

1

A
1

2

1 2 3

3

Example: Static geometry analysis
can reveal that object1 only
touches object2; tracks leaving 1
never have to be checked against
3 for relocating

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Further R&D in Navigation Optimization
! Traditional navigation algorithms (in G4/TGeo world)

are still

! … to generic
! runtime polymorphic approach
! e.g., no internal vectorization over primitives possible

! … poorly exploiting structural and static information
about a scene

! no usage of boundary touching relation between objects
! no fast lookup of global-local transformation for placed entities
! etc…

26

•HEP detectors are pretty static
objects; most things are known at
compile time or constant during
(long) run-time

•Opportunity to pre-analyse + pre-
compute + compile-time optimize

•Goal: Exploit these
opportunities via volume-
specialized navigator
algorithms produced via
automatic C++ code generation

1 3

2

0

@
0 1 0
1 0 0
0 0 0

1

A
1

2

1 2 3

3

Example: Static geometry analysis
can reveal that object1 only
touches object2; tracks leaving 1
never have to be checked against
3 for relocating

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Implementation Status and Workflow
! Prototype service to generate volume-specialized navigator algorithms has been implemented
! considerably reduced virtual functions
! reduce time spent in coordinate transformation (via compile-time lookup structures)
! put static neighbourhood information for fast relocation
! reduce time in copying state information for navigation …

27

“NavigationSpecializer”

Volume Name

Geometry Description

Generated Navigator class (as C++ code)

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Implementation Status and Workflow
! Prototype service to generate volume-specialized navigator algorithms has been implemented
! considerably reduced virtual functions
! reduce time spent in coordinate transformation (via compile-time lookup structures)
! put static neighbourhood information for fast relocation
! reduce time in copying state information for navigation …

! Can be embedded into a (JIT) workflow of a simulation

27

“NavigationSpecializer”

Volume Name

Geometry Description

Generated Navigator class (as C++ code)

libNavigators.so(Continue) Long
Simulation

Small Simulation extract important geometry
volumes (in terms of number of
steps)

compile into(dynamic)
hook-in

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Benchmarking Specialized Navigators
! Extracted important (“showering”) volumes (in terms of number of steps) in an ALICE Pb-

Pb simulation and measured time to do one “step” in these volumes

28

Volume G4 TGeo VecGeom Normal VecGeom Specialized EXTRA SPEEDUP

ZNST 0.24 0.28 0.10 0.06 1.67

ZPST 0.25 0.29 0.11 0.06 1.83

DCML 0.24 0.28 0.12 0.06 2.00

voRBCuTube 0.16 0.24 0.10 0.06 1.67

ZNGx 0.09 0.18 0.06 0.03 2.00

AFaGraphiteCone 0.74 0.36 0.11 0.03 3.67
numbers are time in seconds; worst is red; best is blue

! Navigator specialization delivers extra speedup kick; making gain compared to G4/TGeo
even more significant

pr
el

im
in

a
ry

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Effect of Specialization on Basket SIMD

29

volume base algo normal scalar normal
vecor

specialized
scalar

specialized
vector

HVQX simple 12.6 10.6 6.4 4.7

ZDC_EMFiber simple 10.1 8.8 5.9 2.6

ZDC_EMLayer
voxel

(hybrid) 27.0 27.0 19.7 19.3

! Navigator specialization boosts gain from SIMD basket interfaces (in simple setups)

! Seen from better ratio scalar/vector for specialized timings

numbers are time (in some units) doing a navigation step; volumes are
important showering volumes identified in a Geant-V simulation of CMS

pr
el

im
in

a
ry

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Conclusion
! VecGeom is a full multi-platform and multi-API geometry

system with the potential to serve both Geant-V as well as
Geant-4

! VecGeom makes use of SIMD opportunities in various
contexts and shows considerable performance (CPU +
memory) benefits compared to existing solutions

! Demonstrated avenue for further performance
opportunities (to be put in production)

30

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Future plans
! R&D work to further accelerate various algorithmic parts

! Continue navigator specialization work

! Acceleration of tessellated solid + multi-union using the ideas used in navigation module

! Learn more from developments in ray-tracing libraries (Intel Embree, …)

! Implement missing geometry primitives

! Twisted primitives, …

! Consolidation of code / API / tests

! Native connection to Geant4

31

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016 32

Backup

geant-dev@cern.ch October 2016

Testing VecGeom
! Unit tests

! Consistency test

! ShapeTester

! Verification against existing packages (benchmarker) + performance tests

! XRayBenchmarker

! Benchmarker

! Test through regression / unit tests of Geant4 (see talk on integration)

33

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Some details on benchmark environment
! Benchmark setup:

! All benchmarks presented here were run with tag “W40-16” of
VecGeom

! Benchmark machine: Intel(R)-Core(TM) i7-5930K running CERN CC7

! Compiler gcc4.8.5

! Vc 1.2.0 backend of VecCore with native (=AVX2) instruction set
(unless otherwise specified)

34

mailto:geant-dev@cern.ch

geant-dev@cern.ch October 2016

Geometry-Primitive Status: The Big Matrix
! Performance status for all geometry primitives used in ALICE

! G4S = speedup of VecGeom scalar against G4; RS = (against ROOT); US (against USolids original); SIMD = gain from basked interface

! few slowdowns mainly due to stricter conventions than before

35

DistanceToIn DistanceToOut Contains/Inside
G4S RS US SIMD G4S RS US SIMD G4S RS US SIMD

Box 0.82 1.08 0.89 2.49 1.40 1.22 1.00 2.22 0.83 1.01 1.03 1.97
Tubes 1.21 1.57 1.23 1.96 1.17 0.88 1.44 2.16 0.85 0.91 1.03 1.95
TubeSegs 1.16 1.34 1.12 2.09 1.75 1.00 1.81 2.29 2.47 1.85 1.84 2.22
TubesCombined 1.19 1.51 1.20 1.99 1.32 0.91 1.53 2.19 1.11 1.31 1.24 2.16
Cones 1.24 2.03 1.14 1.19 1.55 1.27 1.34 1.27 1.25 1.27 1.34 1.60
Booleans 4.29 1.79 - 1.04 3.63 1.90 - 1.03 4.44 1.26 - 1.15
Pcon 4.21 1.79 1.21 1.07 4.65 1.37 1.31 1.11 6.18 1.83 1.36 1.29
Pgon 2.02 5.07 2.73 1.02 1.88 4.33 2.78 1.05 7.15 5.94 5.87 1.27
Arb8 7.24 1.66 2.12 1.17 3.63 2.80 2.75 2.38 16.97 1.34 1.17 2.54
Gtra 4.02 1.13 1.35 1.31 1.07 1.35 1.38 2.04 16.52 1.17 1.08 2.56
Para 1.17 1.15 - 2.05 1.13 1.01 - 1.88 1.04 1.06 - 1.66
Trd1 1.18 1.18 1.23 3.02 1.87 1.87 1.92 2.14 0.95 1.07 0.97 4.15
Xtru 4.79 4.20 4.08 1.03 8.16 8.91 7.71 1.07 1.44 2.36 1.38 1.22
Torus 11.50 3.50 - 1.05 10.94 4.58 - 1.10 2.35 4.99 - 1.85
Trap 1.14 1.19 0.96 2.28 1.16 1.03 1.11 2.36 1.46 1.68 0.95 1.97

Speedup

>2
>1.2
>1.0
<1

very good

good

neutral

bit slower

NEEDS UPDATE

mailto:geant-dev@cern.ch

