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Outline
! VecGeom – An Introduction
! Motivations; Requirements; Development Approach; Components

! Shape Primitives — Status + Performance 
! Feature overview
! Implementation status
! Reasons for speedup (highlights)

! Navigation Module — Status + Performance
! Overview of developments
! SIMD accelerated voxel structures
! Navigator code generation

! Summary, Future Plans
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VecGeom: Requirements + Goals
! Geometry is one of the most important pillars of simulation

! GeantV needs geometry library …
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VecGeom: Requirements + Goals
! Geometry is one of the most important pillars of simulation

! GeantV needs geometry library …
! able to handle baskets/vectors of tracks in all algorithmic parts (basket API)

! designed to be used in heavily multi-threaded environments + allowing for rapid track 
(context) switches

! able to compile/run on accelerators (GPU, KNL, …)

! Target performance and SIMD acceleration in all aspects
! Target SIMD speedup by handling vectors of tracks

! Or SIMD speedup of complex algorithm handling one track (internal vectorization)
3
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Motivations illustrated …
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VecGeom: Challenges
! Substantial code management / duplication problem

! Support both traditional “scalar” track queries as well as “vector” queries

! Need to compile on a lot more platforms than previously

5
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VecGeom: Challenges
! Substantial code management / duplication problem

! Support both traditional “scalar” track queries as well as “vector” queries

! Need to compile on a lot more platforms than previously

! How to SIMD-vectorize reliably?

! How to vectorize for basket case?

! How to internally accelerate complicated shape primitives or scenes?

5
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Strategy To Address Challenges
! Promote use of components of generic templated code…

! to describe the algorithms once; instantiate them for different 
scenarios (scalar; vector; GPU) to solve code duplication

! for performance via compile time code specialization

6
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Strategy To Address Challenges
! Promote use of components of generic templated code…

! to describe the algorithms once; instantiate them for different 
scenarios (scalar; vector; GPU) to solve code duplication

! for performance via compile time code specialization

! Use explicit vectorization techniques through SIMD wrapper 
libraries and VecCore abstraction

! Start from existing code from G4 / TGeo / USolids  but review/
improve/redesign algorithms and memory layout
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Generic Programming Approach Illustrated
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VecGeom: Component Overview
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VecGeom and USolids
! USolids originated as a project before VecGeom with the goal to 

unify “shape-primitives” development for Geant4/TGeo (AIDA 
financed project)

! Today, VecGeom contains the USolid effort and is the natural 
evolution of it

! USolids now is the geometry-primitive part of VecGeom, targeted 
to unify “shape-primitive” development for Geant4/TGeo/Geant-V

! Many of the good results today are due to the original USolids 
effort

9
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Geometry Primitives
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Shape Primitives - Highlights
! Better algorithms compared to 

previous implementations 

! Basket interface with SIMD gains      
(in simple geometry primitives)  

11

0

400

800

1200

1600

DistanceToIn SafetyToIn Contains

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

NEEDS UPDATE
Time (units) measured for a tube segment

mailto:geant-dev@cern.ch


geant-dev@cern.ch October 2016

Shape Primitives - Highlights
! Better algorithms compared to 

previous implementations 

! Basket interface with SIMD gains      
(in simple geometry primitives)  

11

0

400

800

1200

1600

DistanceToIn SafetyToIn Contains

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

NEEDS UPDATE
Time (units) measured for a tube segment

1

1

1 1

mailto:geant-dev@cern.ch


geant-dev@cern.ch October 2016

Shape Primitives - Highlights
! Better algorithms compared to 

previous implementations 

! Basket interface with SIMD gains      
(in simple geometry primitives)  

11

0

400

800

1200

1600

DistanceToIn SafetyToIn Contains

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

NEEDS UPDATE
Time (units) measured for a tube segment

2

2
2

2

1

1

1 1

mailto:geant-dev@cern.ch


geant-dev@cern.ch October 2016

Shape Primitives - Highlights
! Better algorithms compared to 

previous implementations 

! Basket interface with SIMD gains      
(in simple geometry primitives)  

11

0

400

800

1200

1600

DistanceToIn SafetyToIn Contains

ROOT
Geant4
USolids
VecGeom ScalarAPI
VecGeom ManyParticle API

NEEDS UPDATE
Time (units) measured for a tube segment

2

2
2

2

1

1

1 1

! Portable code (CPU and GPU/CUDA)

! Portable SIMD (SSE to AVX-512)

SSE AVX2 AVX-512 CUDA
DistanceToIn 1.57 2.07 2.51 tbd
Safety 2.37 2.50 3.56 tbd
Contains 1.72 2.17 3.36 tbd

Speedup of basket treatment (100000 tracks) against 
VecGeom scalar CPU version

For details on AVX-512 and CUDA, see talk 
on “Accelerators”
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Shape-Primitives Status: The ALICE Use-Case
! VecGeom now has all shape-primitives to satisfy needs of most HEP experiments (Xtruded added recently)

! For ALICE simulations (Pb-Pb), demonstrate that VecGeom offers very significant performance gains for the most CPU 
relevant shape-primitives even in scalar track mode

12

Primitive Safety Dist2In Dist2Out Contains CPU% 
Sum

Pgon 2.05 2.52 0.18 1.18 5.93

Xtru 0.56 0.68 0.20 1.81 3.25

Pcon 1.07 0.32 0.05 0.13 1.57
% of CPU cost of shape primitives (TGeo) in typical ALICE Pb-Pb 

simulation

! Depending on experiment, a few % in CPU simulation cost gainable by switching to VecGeom primitives 
(integration effort into G4/TGeo under way; see separate talk)
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New Features in VecGeom: Some Reasons For Improvements

! Algorithmic improvements

! Increased logical decomposition of kernels

! Increased pre-computation/caching

! Use modern C++; promote inlining; promote better compiler optimization 

! Explicitly targeting inner SIMD acceleration where appropriate

! Template shape specializations

! Placement shape specializations

13
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Highlight I: Algorithmic Improvement Example
! Introduced Wedge class (half-space given by phi angle)

! Logical part of many shapes: tube-segments, cone-segments, pcon-segments

! Very simple but effective improvement over existing code in USolids and G4

14
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! outside test for point P was so far 
exclusively done using atan2

! now very fast test using only 2 dot 
products of 2D vectors

! enormously speeding up 
„Contains“, Safety, ... for many 
primitives
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Highlight II: Internal Vectorization Example
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trees for polyhedron (see navigation 
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Navigation Module
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The Navigation Module

17

“Single-object” 
problem

! Geometry primitives provide algorithms for simple ray - shape 
problems (focus on individual object)
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The Navigation Module

17

“Multi-object” 
problems

“From individual objects to 
scenes”

“toy” 2D representation

“Single-object” 
problem

! Geometry primitives provide algorithms for simple ray - shape 
problems (focus on individual object)

! Navigation module provides “multi-object” algorithms:
! provides next colliding object + distance in a “multi-object” scene
! provide object after the next boundary crossing
! simulations spend significant time in navigation module (ALICE ~30% with 

TGeo, similar in CMS, …)
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The Navigation Module

! Goals / Targets: 

! Implement navigation system in VecGeom scaling to many 
particles and many threads

! Implement acceleration structures for fast candidate 
rule-out (scaling ~log(N) - see voxel techniques of G4/
TGeo)

! Target explicit SIMD acceleration
17
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! Geometry primitives provide algorithms for simple ray - shape 
problems (focus on individual object)

! Navigation module provides “multi-object” algorithms:
! provides next colliding object + distance in a “multi-object” scene
! provide object after the next boundary crossing
! simulations spend significant time in navigation module (ALICE ~30% with 

TGeo, similar in CMS, …)
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Navigation Implementation Status
! Stateless navigator classes implementing abstract interface

! stateless for easy threading and switching tracked particles (big difference to G4; TGeo)

! abstract interface for convenient navigator specialization for various contexts

! State (“NavigationHistory”, etc.) is always carried in separate 
NavigationState objects

! Templated (policy based) component-oriented implementation of 
navigation; easy to add new navigation algorithms or extend existing one

! Support for navigation in assemblies

18
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SIMD Acceleration of „Voxel“ Navigation
! Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, … 

! How to combine this with SIMD paradigm?

19
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=
„done in same CPU time“
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! Canonical solution for fast hit-detection: tree structures, lookup structures, bounding boxes, … 

! How to combine this with SIMD paradigm?
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19

get SIMD gain from treating group of boxes in parallel

get scaling from hierarchies of bounding box groups (forming regular trees)

Inspired from e.g.: Shallow bounding volume hierarchies for fast SIMD ray tracing of incoherent rays + CPU ray-tracing libraries: Intel Embree, …

=
„done in same CPU time“

ray bounding box 
intersection test

ray bounding box 
intersection test
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Regular Tree Building via Clusterization
! Basic algorithm:

! let S == elements in SIMD register

! cluster objects into groups of S elements 
(we use a variation of k-means)

! identify bounding boxes of grouped objects 
as daughters of a tree node

! iterate this process

20

Clusterization and tree-buildinginitial final

Algorithm illustrated here for SSE (= 2 double numbers per register)
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SIMD-Trees: Status + Local Benchmark
! Test approach on various detector volumes
! most important complex volumes from ALICE:  ALIC + TPC_Drift
! a complex volume from CMS:  MBWheel (~600 daughter volumes)

! Perform local navigation benchmark:  One step + boundary crossing in 
the given volume for 0.5 million different tracks

21

ALIC

TPC_Drift

MBWheel

Volume Daughters G4 TGeo VecGeom 
(SSE4.2)

VecGeom 
(AVX2)

ALIC (ALICE) 65 0.74 1.07 0.30 0.23

TPC_Drift 
(ALICE) 641 14 2.2 1.2 0.9

MBWheel 
(CMS) ~600 0.84 1.09 0.49 0.35

! Demonstrating overall speedup >2 compared to existing solutions + gain from SIMD unit 
(see change SSE4.2 to AVX)

numbers are time in seconds; worst is red; best is blue
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Test/Global Benchmark of VecGeom Navigation
! Evaluate VecGeom (solids + navigation) on complex modules for multiple 

steps

22
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screen; pixel records 
some scalar tracking 
information (number of 
boundaries crossed) 
and can be converted 
to an image
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! XRay-Benchmarker:

! follow geantions 
through geometry 
pixel-by-pixel

! record some 
information on screen

! Perfect for validating navigation algorithms (can do same with G4/TGeo)

! Good to get a global idea of library performance
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[swenzel@pcalice121 newvgmbuild]$ grep "time" ITSSPDx100 
 ROOT Elapsed time : 13.4979 
 Geant4 Elapsed time : 37.5504 
 VG Elapsed time : 1.372e-06 
 VG (NEW) Elapsed time : 4.10331 
[swenzel@pcalice121 newvgmbuild]$ grep "time" ITSSPDz200 
 ROOT Elapsed time : 0.727566 
 Geant4 Elapsed time : 0.685355 
 VG Elapsed time : 1.29e-06 
 VG (NEW) Elapsed time : 0.258022

Geantino-XRay: Global Performance 

! Example for ALICE ITSSPD 
module (to test assembly 
implementation)

! Perfect agreement between G4/
TGeo/VecGeom

! Observe generally factors > 2.6x 
speed improvement against other 
packages

! Another indication of global 
performance advantage of 
VecGeom
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Geant-V: Switching TGeo to VecGeom
! Can globally benchmark VecGeom 

within full Geant-V simulation (with 
tabulated physics) by switching between 
TGeo <-> VecGeom

! Gain a factor ~1.6 in simulation 
runtime for CMS benchmark using 
VecGeom

! Consuming considerably less 
memory

! Gain from basket treatment still under 
investigation (see next slide)

24
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Remaining Challenges

! Achieved SIMD acceleration in 
various parts of full navigation

25
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Remaining Challenges

! Achieved SIMD acceleration in 
various parts of full navigation

! Full SIMD gain in basket mode 
remains a challenge because some 
algorithmic parts do not vectorize well 
in basket mode and represent major 
overheads

! We need to reduce these 
overheads !

! Currently addressing these 
challenges in R&D (see next slides)
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Further R&D in Navigation Optimization
! Traditional navigation algorithms (in G4/TGeo world) 

are still

26
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! … to generic
! runtime polymorphic approach
! e.g., no internal vectorization over primitives possible
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Further R&D in Navigation Optimization
! Traditional navigation algorithms (in G4/TGeo world) 

are still

! … to generic
! runtime polymorphic approach
! e.g., no internal vectorization over primitives possible

! … poorly exploiting structural and static information 
about a scene

! no usage of boundary touching relation between objects
! no fast lookup of global-local transformation for placed entities
! etc…
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•HEP detectors are pretty static 
objects; most things are known at 
compile time or constant during 
(long) run-time

•Opportunity to pre-analyse + pre-
compute + compile-time optimize

•Goal:  Exploit these 
opportunities via volume-
specialized navigator 
algorithms produced via 
automatic C++ code generation
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Implementation Status and Workflow
! Prototype service to generate volume-specialized navigator algorithms has been implemented
! considerably reduced virtual functions
! reduce time spent in coordinate transformation (via compile-time lookup structures)
! put static neighbourhood information for fast relocation
! reduce time in copying state information for navigation …

27

“NavigationSpecializer”

Volume Name

Geometry Description

Generated Navigator class (as C++ code)
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Implementation Status and Workflow
! Prototype service to generate volume-specialized navigator algorithms has been implemented
! considerably reduced virtual functions
! reduce time spent in coordinate transformation (via compile-time lookup structures)
! put static neighbourhood information for fast relocation
! reduce time in copying state information for navigation …

! Can be embedded into a (JIT) workflow of a simulation

27

“NavigationSpecializer”

Volume Name

Geometry Description

Generated Navigator class (as C++ code)

libNavigators.so(Continue) Long 
Simulation

Small Simulation extract important geometry 
volumes (in terms of number of 
steps)

compile into(dynamic) 
hook-in
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Benchmarking Specialized Navigators
! Extracted important (“showering”) volumes (in terms of number of steps) in an  ALICE  Pb-

Pb simulation and measured time to do one “step” in these volumes

28

Volume G4 TGeo VecGeom Normal VecGeom Specialized EXTRA SPEEDUP

ZNST 0.24 0.28 0.10 0.06 1.67

ZPST 0.25 0.29 0.11 0.06 1.83

DCML 0.24 0.28 0.12 0.06 2.00

voRBCuTube 0.16 0.24 0.10 0.06 1.67

ZNGx 0.09 0.18 0.06 0.03 2.00

AFaGraphiteCone 0.74 0.36 0.11 0.03 3.67
numbers are time in seconds; worst is red; best is blue

! Navigator specialization delivers extra speedup kick; making gain compared to G4/TGeo 
even more significant
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Effect of Specialization on Basket SIMD 

29

volume base algo normal scalar normal 
vecor

specialized 
scalar

specialized
vector

HVQX simple 12.6 10.6 6.4 4.7

ZDC_EMFiber simple 10.1 8.8 5.9 2.6

ZDC_EMLayer
voxel 

(hybrid) 27.0 27.0 19.7 19.3

! Navigator specialization boosts gain from SIMD basket interfaces (in simple setups)

! Seen from better ratio scalar/vector for specialized timings

numbers are time (in some units) doing a navigation step; volumes are 
important showering volumes identified in a Geant-V simulation of CMS
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Conclusion
! VecGeom is a full multi-platform and multi-API geometry 

system with the potential to serve both Geant-V as well as 
Geant-4

! VecGeom makes use of SIMD opportunities in various 
contexts and shows considerable performance (CPU + 
memory) benefits compared to existing solutions

! Demonstrated avenue for further performance 
opportunities (to be put in production)

30
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Future plans
! R&D work to further accelerate various algorithmic parts

! Continue navigator specialization work

! Acceleration of tessellated solid + multi-union using the ideas used in navigation module

! Learn more from developments in ray-tracing libraries (Intel Embree, … )

! Implement missing geometry primitives

! Twisted primitives, …

! Consolidation of code / API / tests

! Native connection to Geant4

31
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Testing VecGeom
! Unit tests 

! Consistency test 

! ShapeTester 

! Verification against existing packages (benchmarker) + performance tests

! XRayBenchmarker

! Benchmarker

! Test through regression / unit tests of Geant4 (see talk on integration)

33
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Some details on benchmark environment
! Benchmark setup:

! All benchmarks presented here were run with tag “W40-16” of  
VecGeom

! Benchmark machine: Intel(R)-Core(TM) i7-5930K running CERN CC7

! Compiler gcc4.8.5

! Vc 1.2.0 backend of VecCore with native (=AVX2) instruction set 
(unless otherwise specified)

34
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Geometry-Primitive Status: The Big Matrix
! Performance status for all geometry primitives used in ALICE

! G4S = speedup of VecGeom scalar against G4; RS = (against ROOT); US (against USolids original); SIMD = gain from basked interface

! few slowdowns mainly due to stricter conventions than before

35

DistanceToIn DistanceToOut Contains/Inside
G4S RS US SIMD G4S RS US SIMD G4S RS US SIMD

Box 0.82 1.08 0.89 2.49 1.40 1.22 1.00 2.22 0.83 1.01 1.03 1.97
Tubes 1.21 1.57 1.23 1.96 1.17 0.88 1.44 2.16 0.85 0.91 1.03 1.95
TubeSegs 1.16 1.34 1.12 2.09 1.75 1.00 1.81 2.29 2.47 1.85 1.84 2.22
TubesCombined 1.19 1.51 1.20 1.99 1.32 0.91 1.53 2.19 1.11 1.31 1.24 2.16
Cones 1.24 2.03 1.14 1.19 1.55 1.27 1.34 1.27 1.25 1.27 1.34 1.60
Booleans 4.29 1.79 - 1.04 3.63 1.90 - 1.03 4.44 1.26 - 1.15
Pcon 4.21 1.79 1.21 1.07 4.65 1.37 1.31 1.11 6.18 1.83 1.36 1.29
Pgon 2.02 5.07 2.73 1.02 1.88 4.33 2.78 1.05 7.15 5.94 5.87 1.27
Arb8 7.24 1.66 2.12 1.17 3.63 2.80 2.75 2.38 16.97 1.34 1.17 2.54
Gtra 4.02 1.13 1.35 1.31 1.07 1.35 1.38 2.04 16.52 1.17 1.08 2.56
Para 1.17 1.15 - 2.05 1.13 1.01 - 1.88 1.04 1.06 - 1.66
Trd1 1.18 1.18 1.23 3.02 1.87 1.87 1.92 2.14 0.95 1.07 0.97 4.15
Xtru 4.79 4.20 4.08 1.03 8.16 8.91 7.71 1.07 1.44 2.36 1.38 1.22
Torus 11.50 3.50 - 1.05 10.94 4.58 - 1.10 2.35 4.99 - 1.85
Trap 1.14 1.19 0.96 2.28 1.16 1.03 1.11 2.36 1.46 1.68 0.95 1.97

Speedup

>2
>1.2
>1.0
<1

very good

good

neutral

bit slower

NEEDS UPDATE
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