

Field Propagation

John Apostolakis (CERN) for the GeantV development team

October 2016

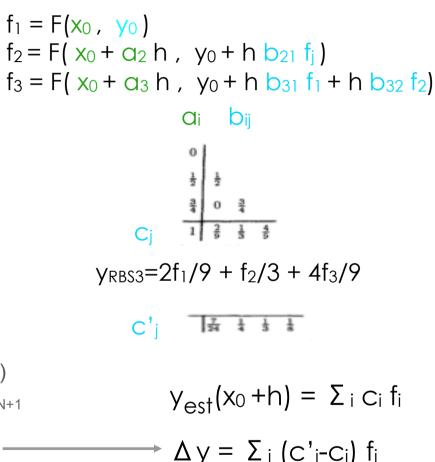
Outline

- Propagation in field: what, why, ...
- Improved Runge-Kutta algorithms
- Vectorization
- First results
- Status of integration

Components

- ☐ Field evaluation
- Evaluation of the 'force' dP/ds
- Integration of equation of motion alternative methods
- □ Driver ensuring integration accuracy & performance
- Intersection with volume boundaries

Integrating efficiently

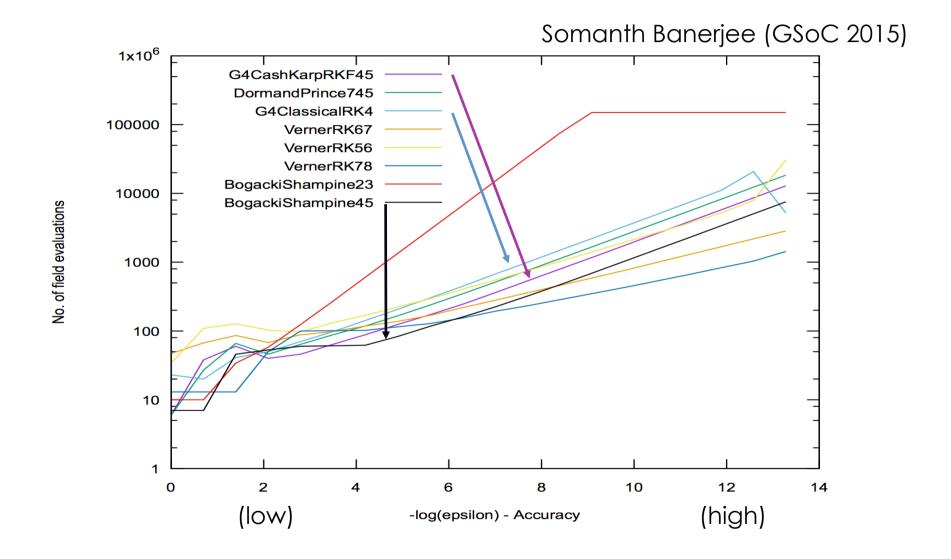

- ☐ Given a detector's field B(x,y,z) [or B+E] we need to integrate the trajectory of each track, taking care
 - to stay within a relative accuracy ε
 - to be fast using as few calls as possible to the field method
- Typically choice is Runge-Kutta method
 - No 'history' + ability to adjust step size

s (curve length) $|\Delta x| < \varepsilon \text{ s}$ $|\Delta p| < \varepsilon \text{ p}$ $\Delta |p| \sim 0$ Estimate x_4 Estimate x_5 , Correct
Estimate p_4 Estimate p_5

Embedded Runge-Kutta methods

- "Integrate" dy/dx = F(x, y) interval x_0 to x_0 +h
- \square Uses **evaluations** of F(x, y)

- Each method has its 'tableau' made up by a_i, b_{ij}, c_i
- Key Parameters of an RK method:
 - Number of 'stages' = number of evaluations of f()
 - \square 'Order' N = the expected scaling of the error $\sim h^{N+1}$
 - Embedded method = 2nd 'line' to estimate error -



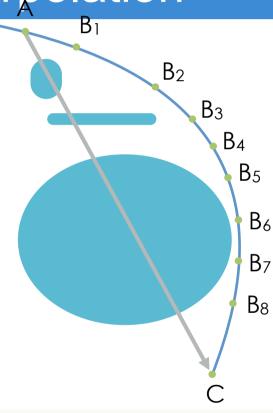
Improved methods

- Seek to go far with fewer field evaluations
- RK method order and choice ('tableau' values) determine number of steps to achieve a certain accuracy
- Introduced new, more efficient methods
- New features
 - First Same As Last = Estimates derivative at end-point
 - Interpolation = ability to evaluate (m)any intermediate point(s), with fixed number of extra derivative/field evaluations

geant-dev@cern.ch

6

New methods


- Several newer 5th order RK methods, established & recent
 - State of the art: Dormand-Prince (DoPri5), Bogacki-Shampine
 - New Tsitouras 2008 (obtained 'without simplifying constraints')
- □ Higher order methods potential use for high accuracy or complex, smooth fields
 - cross-over point depends on complexity of dy/dx i.e. field
- Most have "first same as last" property
 - evaluate/ & use field at endpoint of interval, so it is available 'no-cost' for next interval
- □ Integrated and released in Geant4 10.3-beta (June 2016)

SELECTED new methods

Name / Authors	Order	Stages	Error	#Evaluations		FSAL	Interpolation	Extra
			Estim.	Failed Good			(Order)	evaluations
Classical	4	4	Ν	11	11	No	No	-
CashKarp	5	6	Y	5	5	No	No	-
Dormant-Prince 5 "DoPri5"	5	7	Y	6	5	Yes	Yes - 2 ways (4/5)	0/2
Bogacki-Shampine45	5	8	Υ	7	6	Yes	Yes	2
Dormand-Prince8	8	13	Y	12	11	No	No	
Verner78 'efficent'	8	13	Y	12	12	No	Yes - 2 (7 / 8)	4/8

New RK methods - Interpolation

- Selected RK methods offer capability of estimating any intermediate point given its 'distance' along the curve
 - One-time cost of a few extra field evaluations
 - Reduced cost of evaluating intermediate points (vs new integration)
 - ■Will enable faster location of intersection point with surface boundary

SELECTED new methods

Name / Authors	Order	Stages	Error	#Evaluations		FSAL	Interpolation	Extra
			Estim.	Failed Good			(Order)	evaluations
Classical	4	4	Ν	11	11	No	No	-
CashKarp	5	6	Y	5	5	No	No	-
Dormant-Prince 5 "DoPri5"	5	7	Y	6	5	Yes	Yes - 2 ways (4/5)	0/2
Bogacki-Shampine45	5	8	Υ	7	6	Yes	Yes	2
Dormand-Prince8	8	13	Y	12	11	No	No	
Verner78 'efficent'	8	13	Y	12	12	No	Yes - 2 (7 / 8)	4/8

October 2016

Integrating motion

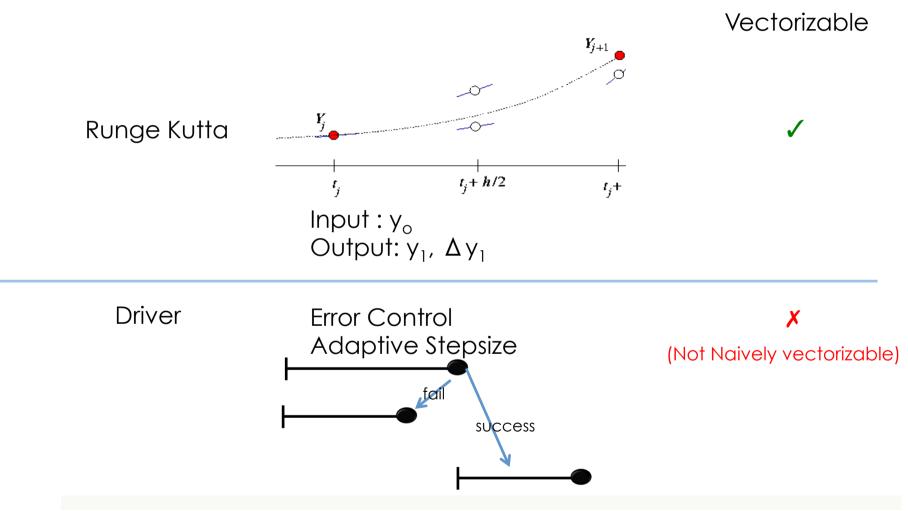
Vecotrizable

/

Magnetic Field

Force

$$\vec{F} = \frac{1}{m} \vec{p} \times \vec{B}$$


 \vec{B}

/

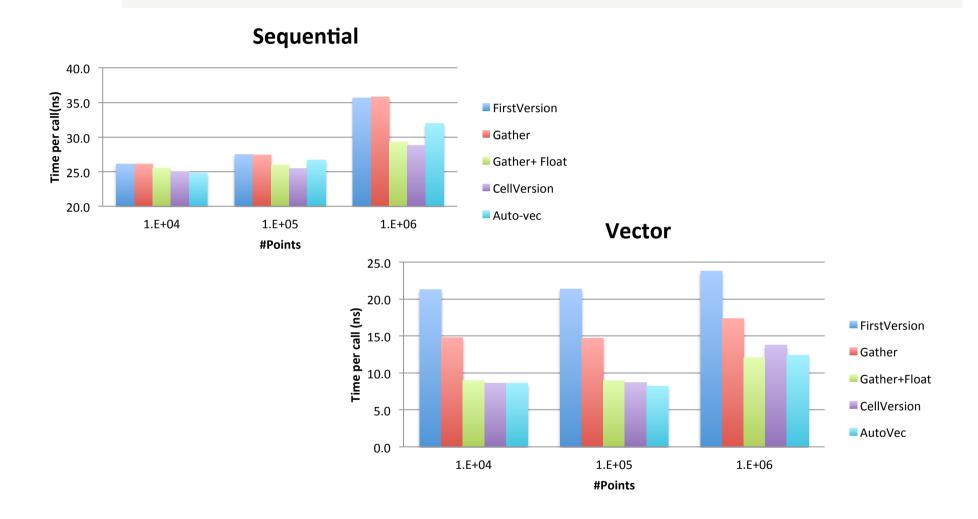
Equation of motion (ODE)

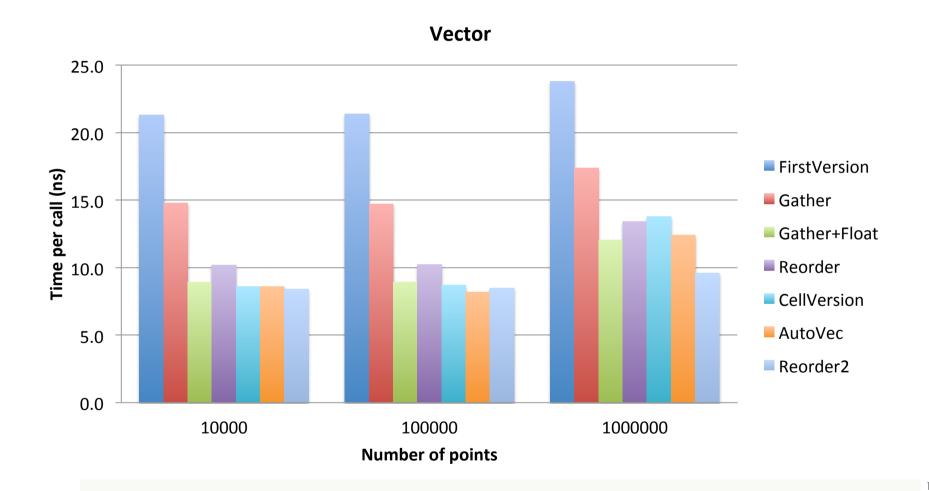
$$\frac{d\vec{\mathbf{x}}}{ds} = \frac{\vec{\mathbf{p}}}{|\vec{\mathbf{p}}|}$$

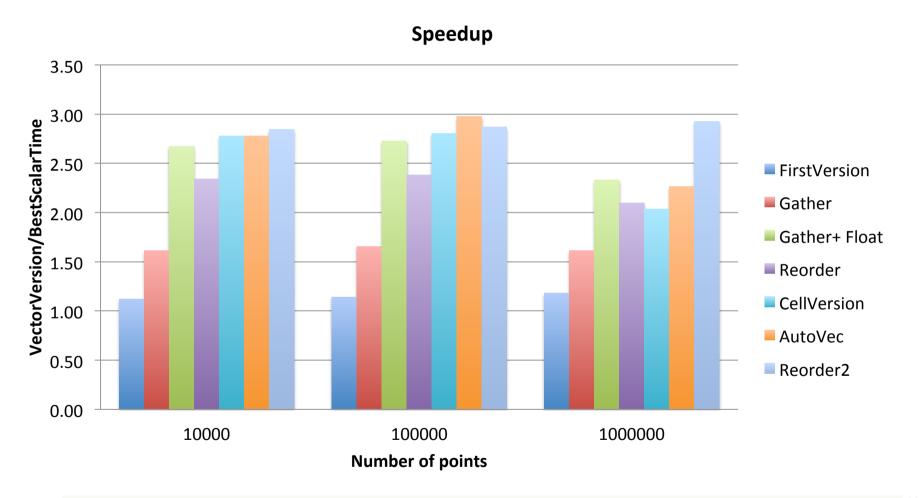
$$\frac{d\vec{\mathbf{p}}}{ds} = \frac{1}{\mathbf{p}} \overrightarrow{\mathbf{F}(v)}$$

Bilinear field interpolation

- Start with sample values of 2D CMS field.
- Assume phi-symmetric field.
- □ Find magnetic field given a point in 3D space.


 (x_1, y_2)


 (x_1, y_1)


(x,y)

 (x_2, y_2)

 (x_2, y_1)

Field evaluation: observations

- Speedup factor of ~3
- Semi-realistic benchmark:
 - Half the points are new; the other half are 'moved' near to previous values.
 - Exponential random distribution.
 - Time reduced by ~5%. Likely effect is from cache.
- Difference in performance from changing doubles to floats:
 - 3-20% for sequential
 - 30-40% for vector version
- Difference in performance from changing order of memory operations:
 - 5-7% for sequential
 - 5-20% for vector version

Vectorization of integration driver

- Takes a buffer stream of 16 particles/tracks.
- Starts working with 4 in Vc vector.
- As soon as integration is over for one track, insert a new track in its place.

Preliminary results (100 steps)							
	Sequential	Vectorized					
#CashKarp Calls	435	172					
#OneGoodStep Calls	324	94					

Status of integration

- □ Currently dispatches single tracks for integration of motion 'baskets' are under development
- Using Runge-Kutta for every step is costly >40% CPU time for complicated field (bilinear model of CMS field)
- Added choice between helix and Runge-Kutta on per track basis arbitrarily $0.05 < \theta < 10$ (radians) 4% CPU time
 - Must improve condition to depend on variability of field within the volume (or the step)
- Ready for gluing of first 'vector' implementation of integration

October 2016

Backup slides

Vtune analysis

		Elapsed Time	Instructions Retired	CPI Rate	Back-end Bound	Memory Bound		Port Utilization
Sequential (nRep = 200)	Reorder2 (Haswell Xeon)	8.166	31.7B	0.947	0.786	0.282	0.505	0.327
Vector (nRep = 500)	Reorder2 (Haswell Xeon)	7.665	33.8B	0.776	0.697	0.143	0.555	0.463