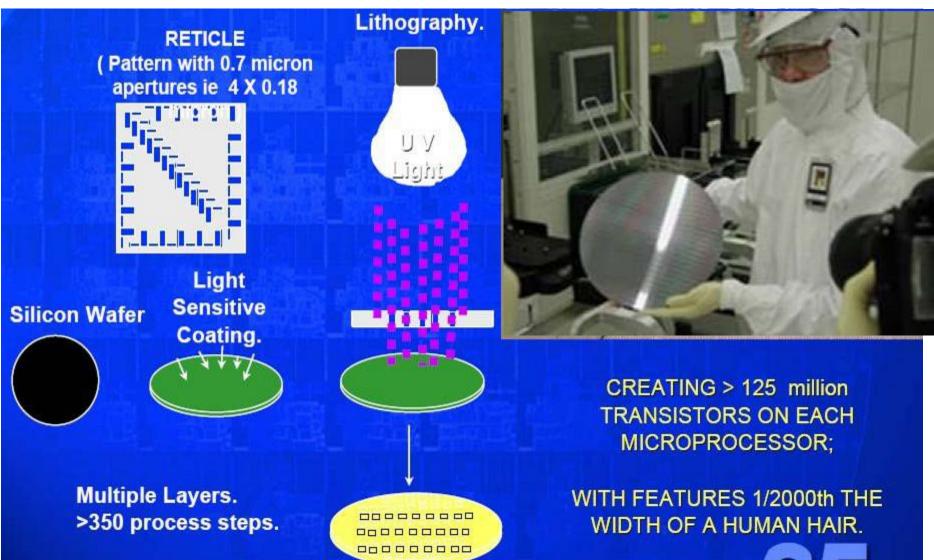

Introduction to Electronics in HEP Experiments

Philippe Farthouat CERN

Introduction to Electronics Summer 2009

philippe.farthouat@cern.ch

Outline



Analog processing Analog to digital conversion Technology evolution Off-detector digital electronics

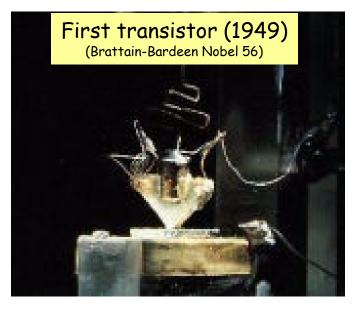
Processing of ASICs

© Intel

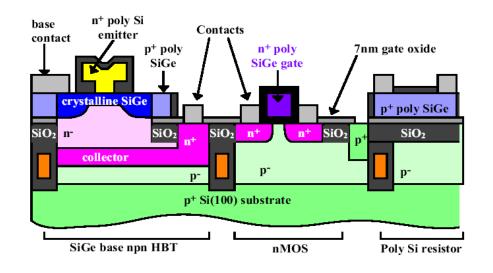
From Sand to ICs...

Introduction to Electronics Summer 2009

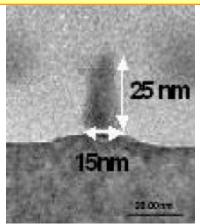
philippe.farthouat@cern.ch

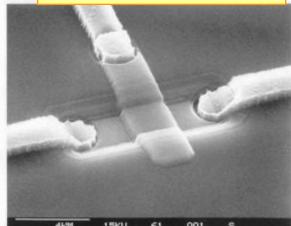

Processing of ASICs

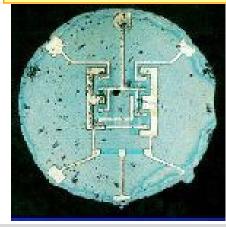
 For those interested in integrated circuits processing, please refer to F. Faccio presentation (from which I stole a few slides)


Step-by-step manufacturing of ULSI CMOS technologies

http://indico.cern.ch/conferenceDisplay.py?confld=48132

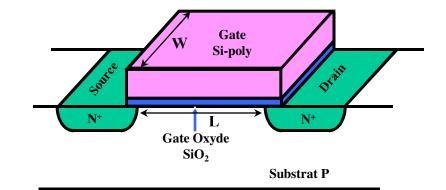

Evolution of technologies

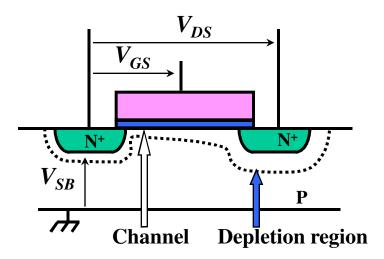

SiGe Bipolar in 0.35µm monolithic process


15 nm MOSFET (2005)

5 µm MOSFET (1985)

First planar IC (1961)


Introduction to Electronics Summer 2009

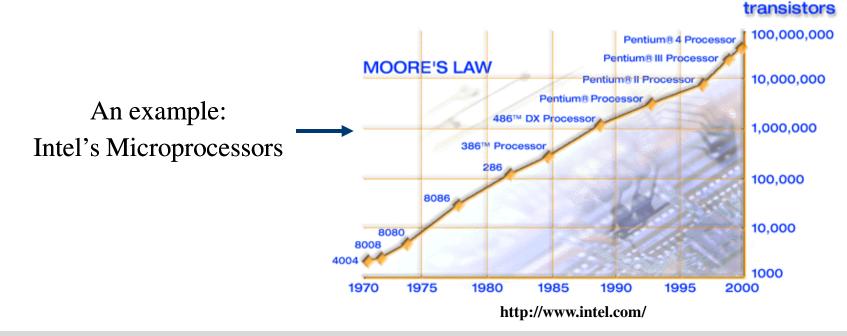

philippe.farthouat@cern.ch

« CMOS scaling »

Reduction of dimensions

- Gate length : L
- Oxide thickness : t_{ox}
- Improvement of speed in 1/L²
 - Transconductance : g_m α W/L
 - Capacitance : C α WL
 - speed : $F_T = g_m/C \alpha 1/L^2$
- Reduction of power dissipation
 - Capacitances decrease
 - Power supply level decreases
 - 2.5V in 0.25μm; 1.2V in 0.13μm
 - Current remains high!
- Reduction of costs (?)
 - Increase of integration density
 - Non recurrent engineering (NRE) costs increase

Principle of Nchannel MOSFET

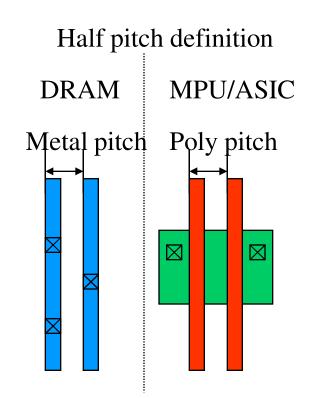

Moore's law

1965: Number of Integrated Circuit components will double every year G. E. Moore, "Cramming More Components onto Integrated Circuits", *Electronics*, vol. 38, no. 8, 1965. 1975: Number of Integrated Circuit components will double every 18 months

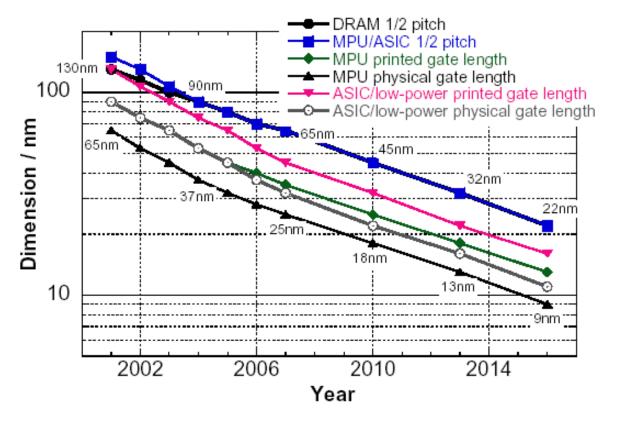
G. E. Moore, "Progress in Digital Integrated Electronics", Technical Digest of the IEEE IEDM 1975.

1996: The definition of "Moore's Law" has come to refer to almost anything related to the semiconductor industry that when plotted on semi-log paper approximates a straight line. I don't want to do anything to restrict this definition. - G. E. Moore, 8/7/1996

P. K. Bondyopadhyay, "Moore's Law Governs the Silicon Revolution", *Proc. of the IEEE*, vol. 86, no. 1, Jan. 1998, pp. 78-81.



Moore's law fundamentals


For every generation:

- Characteristic Dimensions x 0.7
- 🔷 Area x 0.5
- Chip size x 1.5
- Structural improvement x 1.3
- N of components x 4
- Clock frequency x 1.4

Technology nodes (1/2 pitch):
$$0.7 0.7$$

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16
0.5

CMOS technology scaling

This roadmap is 7 years old: Now 45 nm is in production

CMOS technology

Details can be found in the following presentations

IEDM summary and outlook (Walter Snoeys)

http://indico.cern.ch/conferenceDisplay.py?confId=49285

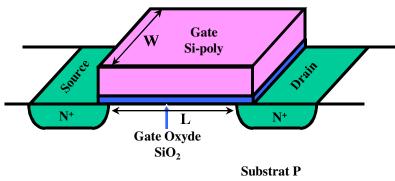
Summary from ISSCC09 (Alessandro Marchioro)

http://indico.cern.ch/conferenceDisplay.py?confld=48130

Impact for our applications

What do we gain?

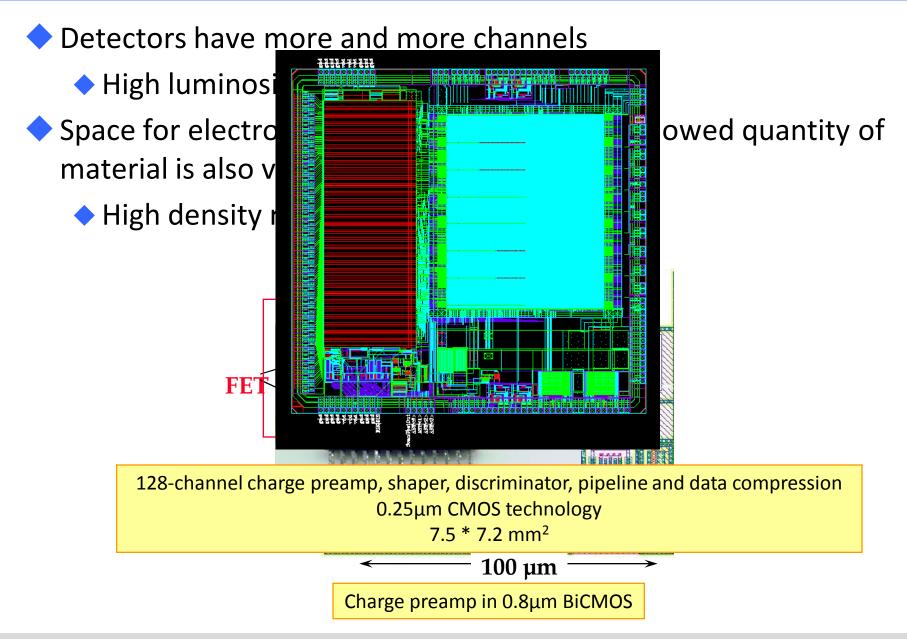
- Radiation hardness
- Integration
- Power dissipation
- Speed


What do we loose?

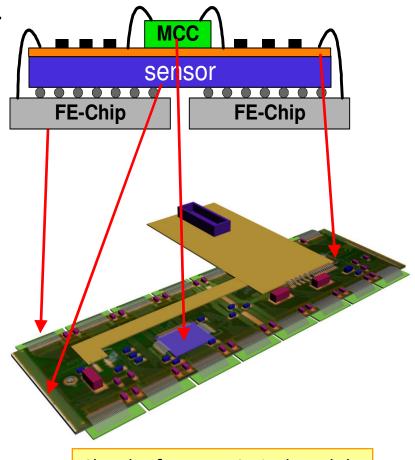
Non recurrent engineering (NRE) costs are high

- Order of 0.5MChF for 0.13µm CMOS technology
- Wafer cost is low but our production volume is low
- Limit as much as possible the iterations (prototyping)
- Limit the number of different designs
- Design tools are extremely complex
 - Long learning curve
 - High investment

Radiation hardness is an issue for a number of our applications


- e.g. LHC experiments tracker electronics can receive as much as 100Mrad (1MGy) during their lifetime
- In CMOS technology most of the problems are coming from charge trapping in the gate oxyde
 - When the gate is very thin, there is less or no problems

Those interested in the subject can look at a presentation from F. Faccio


http://indico.cern.ch/materialDisplay.py?contribId=34&materialId=slides&confId=43007

Gain in integration (1)

Gain in integration (2)

- Pixel detectors require the readout electronics bump bond on the sensor
 - Space available for the readout electronics is equal to the size of the pixel
 - ATLAS case 400*50 μm² today
 - Smaller for upgrade 250*50 μm²
- Smaller feature size technology needed
 - Current readout chip in 0.25µm
 CMOS technology
 - 🔷 Next in 0.13μm

Gain in power

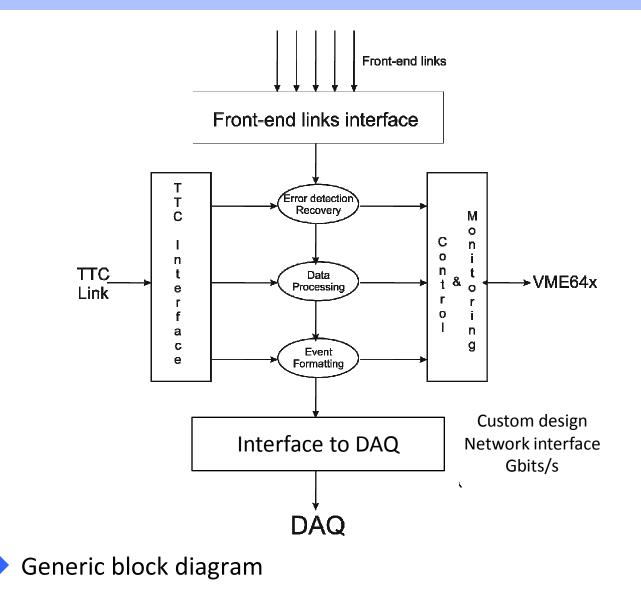
Power is always a problem

(see for instance Power distribution in future experiments (F. Faccio) http://indico.cern.ch/conferenceDisplay.py?confld=39721)

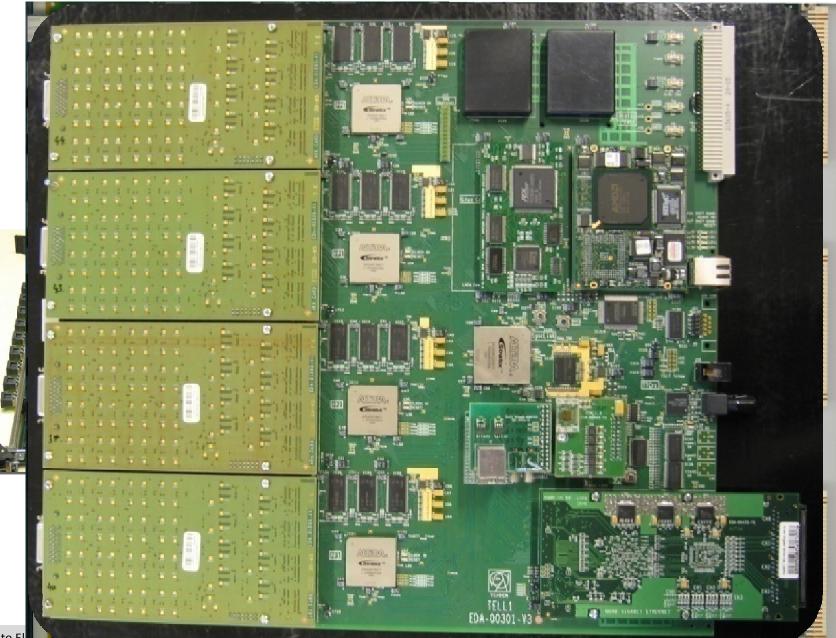
- Heat dissipation in enclosed volume
- Cables needed to bring the power in
- Even 1mW per channel for a tracker leads to 60kW in an "LHC like" tracker
- The wish of having the ADC as early as possible in the readout chain requires low power ADC
- Standard metric to characterize an ADC is the "Figure of Merit"

$$FOM = \frac{Power}{2^{ENB} \times F_{sampling}}$$

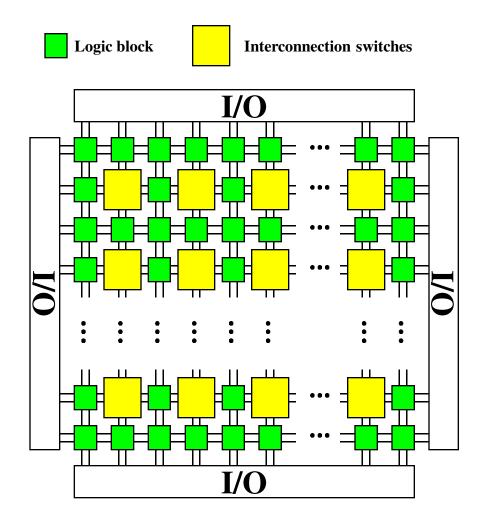
	0.25μm FOM=1pJ/conv	65nm FOM=50fJ/conv	Saving in Power Supply (8ChF/W)
ATLAS Calorimeter 200k channels 15-ENB 40MHz	262 KW	13 KW	~2 MChF
Linear Collider Calorimeter 15M channels 13-ENB 50MHz	6.4 MW	340 kW	A lot


Courtesy A. Marchioro CERN

Outline



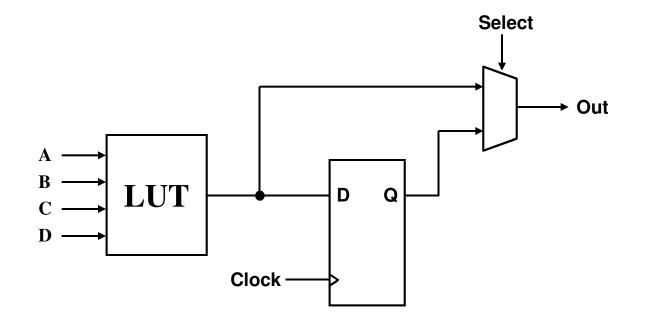
Off-detector readout electronics



Examples of modules

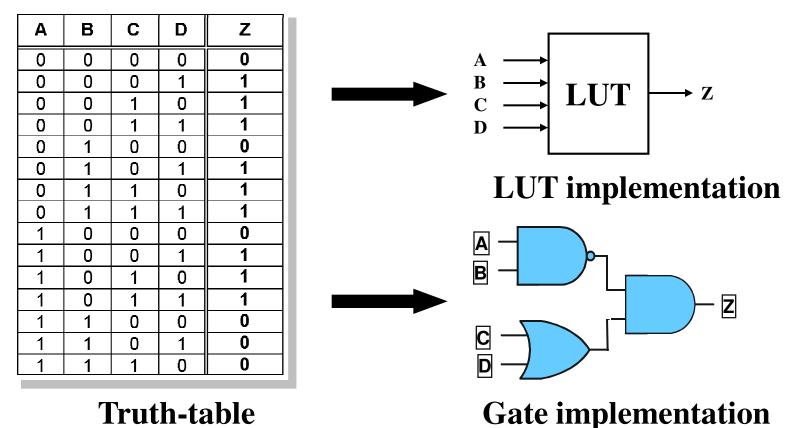
FPGA building blocks:

- Programmable logic blocks Implement combinatorial and sequential logic
- Programmable interconnect Wires to connect inputs and outputs to logic blocks
- Programmable I/O blocks
 Special logic blocks at the periphery of device for external connections

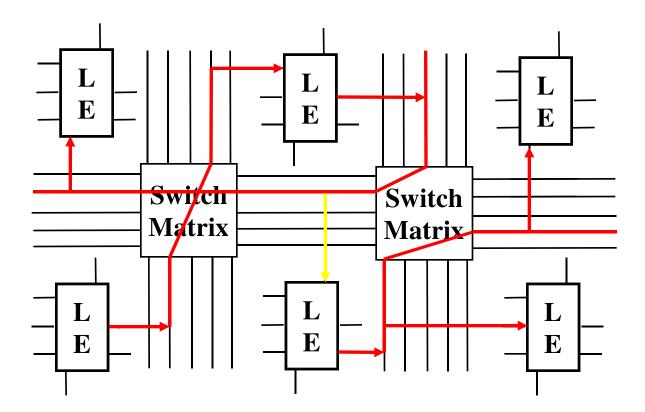


Clock distribution

- Embedded memory blocks
- Special purpose blocks:
 - DSP blocks:
 - Hardware multipliers, adders and registers
 - Embedded microprocessors/microcontrollers
 - High-speed serial transceivers


FPGA – Basic Logic Element

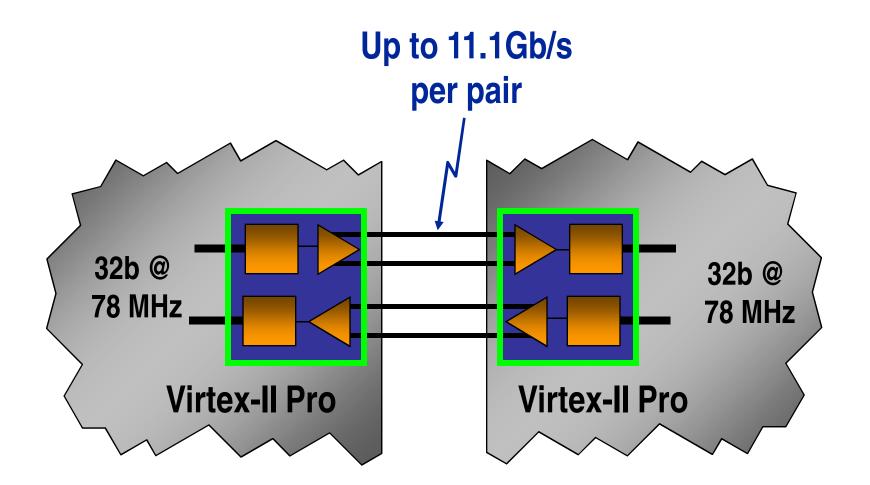
- LUT to implement combinatorial logic
- Register for sequential circuits
- Additional logic (not shown):
 - Carry logic for arithmetic functions
 - Expansion logic for functions requiring more than 4 inputs


 Look-up table with N-inputs can be used to implement any combinatorial function of N inputs

LUT is programmed with the truth-table

Interconnect hierarchy (not shown)

- Fast local interconnect
- Horizontal and vertical lines of various lengths



Configuration Storage Elements

Static Random Access Memory (SRAM)

- each switch is a pass transistor controlled by the state of an SRAM bit
- FPGA needs to be configured at power-on
- Flash Erasable Programmable ROM (Flash)
 - each switch is a floating-gate transistor that can be turned off by injecting charge onto its gate. FPGA itself holds the program
 - reprogrammable, even in-circuit
- Fusible Links ("Antifuse")
 - Forms a low resistance path when electrically programmed
 - one-time programmable in special programming machine
 - radiation tolerant

Xilinx: Rocket I/O

FPGA Vendors & Device Families

🔶 Xilinx

- Virtex-II/Virtex-4: Featurepacked high-performance SRAM-based FPGA
- Spartan 3: low-cost feature reduced version
- CoolRunner: CPLDs
- 🔷 Altera
 - Stratix/Stratix-II
 - High-performance SRAMbased FPGAs
 - Cyclone/Cyclone-II
 - Low-cost feature reduced version for cost-critical applications
 - MAX3000/7000 CPLDs
 - MAX-II: Flash-based FPGA

🔷 Actel

- Anti-fuse based FPGAs
 - Radiation tolerant
- Flash-based FPGAs
- Lattice
 - Flash-based FPGAs
 - CPLDs (EEPROM)
- QuickLogic
 - ViaLink-based FPGAs

Latest Devices: Capacity & Features

Xilinx Virtex-6

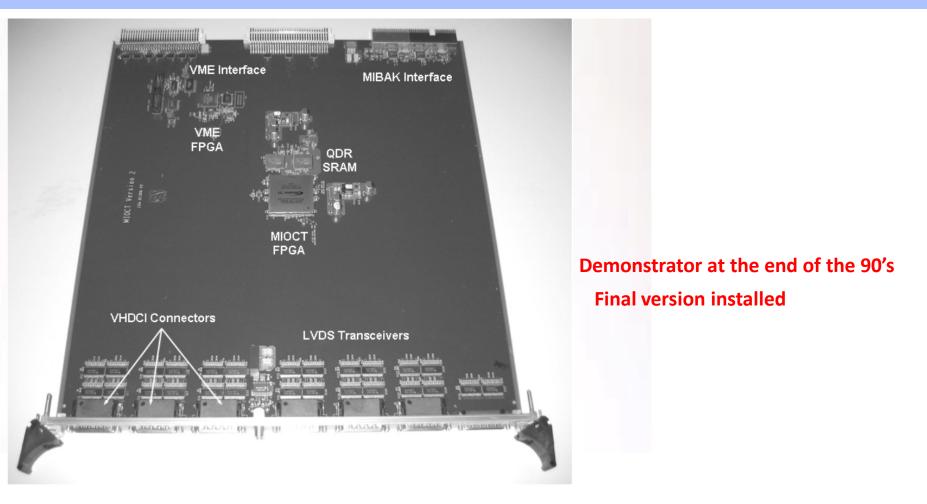
- 🔶 40nm process
- Up to 1200 I/Os
- Up to 760k logic cells
- Up to 38Mb embedded RAM
- Up to 2000 DSP slices
- Up to 36 high-speed serial transceivers at 11.1GB/s

Altera Stratix-IV

- 40nm process
- Up to 1104 I/Os
- Up to 680k logic elements
- Up to 22.4Mb embedded RAM
- Up to 1288 18x18 multipliers
- Up to 48 Serial I/O at 11.5Gb/s

Plus processors (PowerPC)

FPGAs evolution


- 1988: XC3090
- 2008: XC5VLX330T

- 1000 times the number of LUTs
- 2000 times the number of configuration bits = complexity
- 20 times the speed
- 500 times cheaper per function, not counting inflation

Moore's Law has been good to all of us!

Example of evolution

Muon trigger board for ATLAS

- Handles 13 input links, each of them receiving 32-bit every 25ns
- ~17 Gb/s processed

Hardware Description Language (HDL)

 High-level language for to model, simulate, and synthesize digital circuits and systems.

History

- 1980: US Department of Defense Very High Speed Integrated Circuit program (VHSIC)
- 1987: Institute of Electrical and Electronics Engineers ratifies IEEE Standard 1076 (VHDL'87)
- ◆ 1993: VHDL language was revised and updated
- Verilog is the other major HDL

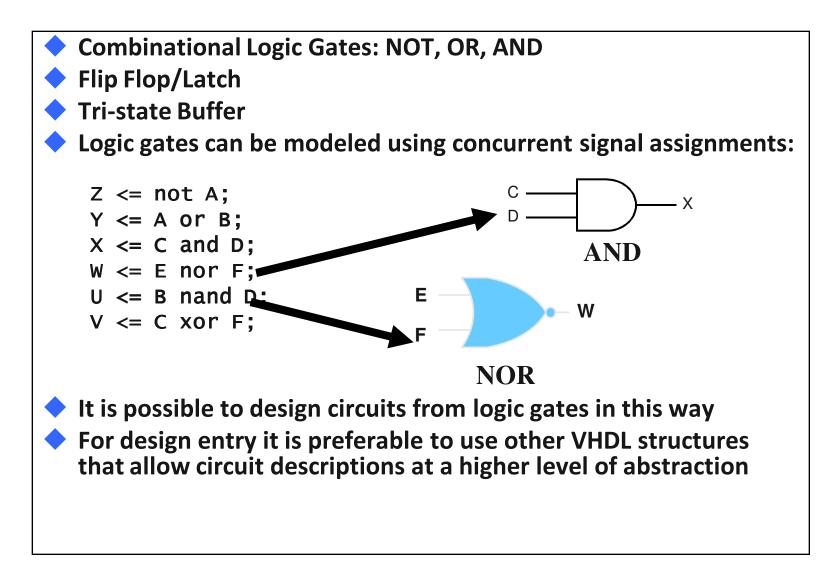
Syntax similar to C language

- At CERN VHDL is mostly used for FPGA design
- Many tools accept both Verilog and VHDL

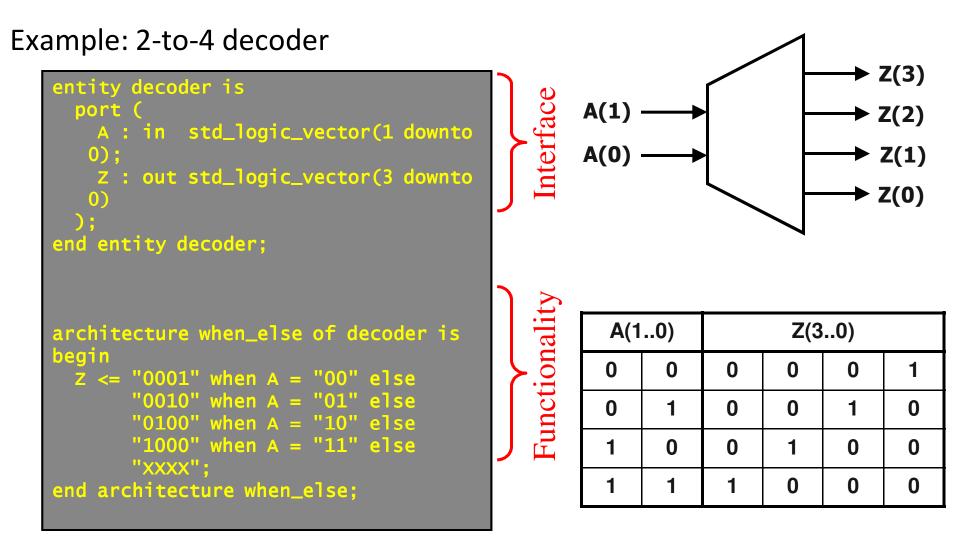
Behavioral modeling

- Describes the functionality of a component/system
- For the purpose of simulation and synthesis

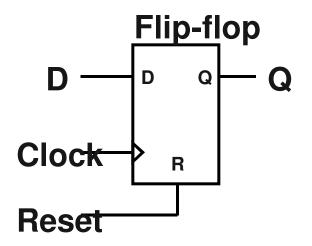
Structural modeling

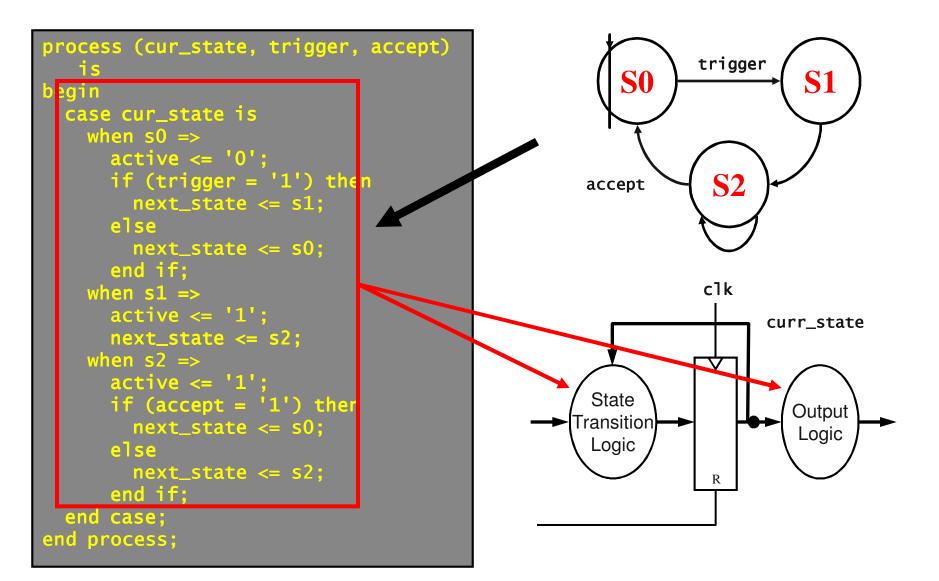

- A component is described by the interconnection of lower level components/primitives
- For the purpose of synthesis and simulation
- Synthesis:
 - Translating the HDL code into a circuit, which is then optimized
- Register Transfer Level (RTL):

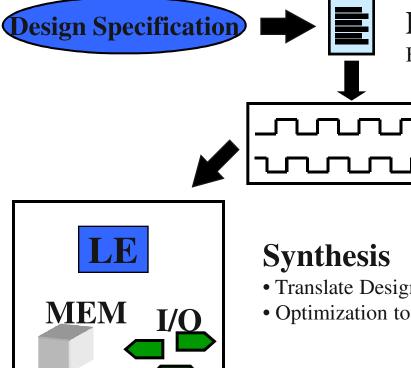
Type of behavioral model used for instance for synthesis


 Most digital systems can be described based on a few basic circuit elements:

- Combinational Logic Gates:
 - ◆NOT, OR, AND
- Flip Flop
- Latch
- Tri-state Buffer

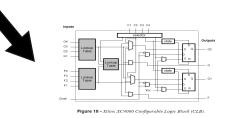

Each circuit primitive can be described in VHDL and used as the basis for describing more complex circuits.


Combinatorial Logic: Decoder


```
architecture rtl of D_FF is
begin
  process (Clock, Reset) is
  begin
    if Reset = '1' then
      Q <= '0';
    if rising_edge(Clock)
    then
      Q <= D;
    end if;
  end process;
end architecture rtl;
```


State Machine (cont.)

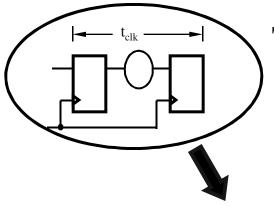
FPGA Design Flow



Design Entry/RTL Coding

Behavioral or Structural Description of Design

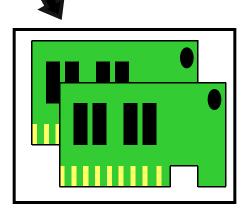
RTL Simulation


- Functional Simulation
- Verify Logic Model & Data Flow (No Timing Delays)
- Translate Design into Device Specific Primitives
- Optimization to Meet Required Area & Performance Constraints

Place & Route

- Map Primitives to Specific Locations inside Target Technology with Reference to Area &
- Performance Constraints
- Specify Routing Resources to Be Used

FPGA Design Flow



Timing Analysis

- Verify Performance Specifications Were Met
- Static Timing Analysis

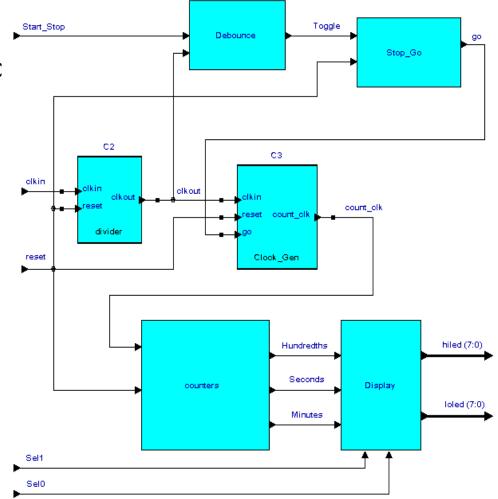
Gate Level Simulation

- Timing Simulation
- Verify Design Will Work in Target Technology

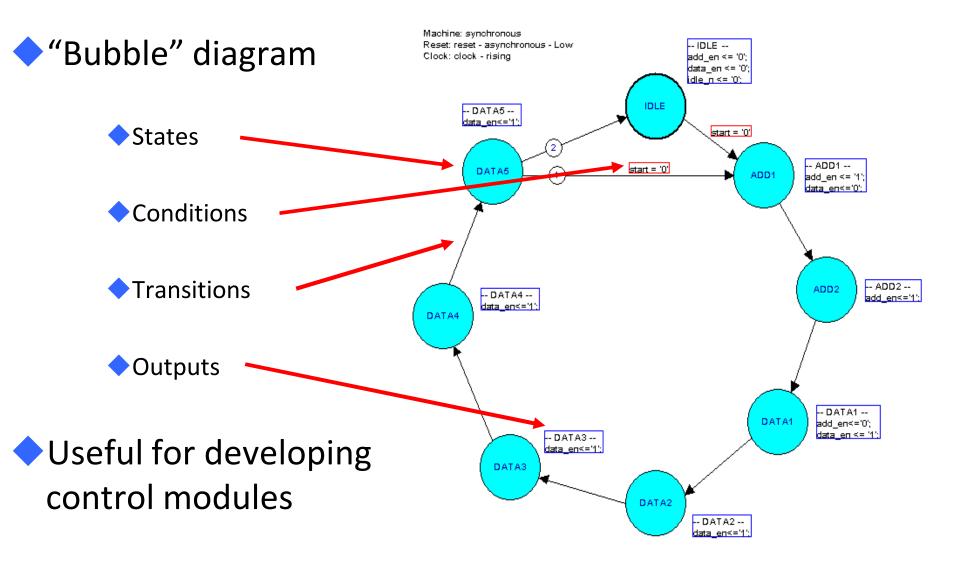
Program & Test

- Program & Test Device on Board

Special mode for editing VHDL source files in emacs

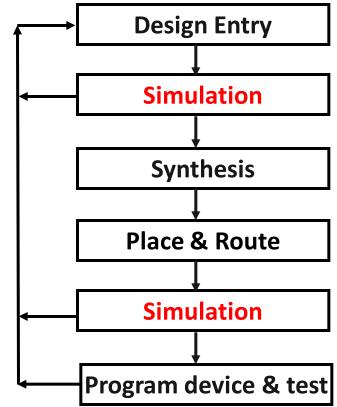

- Features:
 - Syntax colouring
 - Automatic completions
 - Automatic indentation
 - Templates for all VHDL constructs
 - Launching external VHDL compiler

🕈 fsm.vhd - XEmacs										
File Edit View Cmds Tools Options B	Uffers VHDL	Help								
	Project	+								
Open Dired Save Print Cut Copy	Paste Compile	•								
fsm.vhd	Template >									
entity trigger is	If (Generate)	C-cC-tig								
port (76 (Thur)	C-cC-tit								
clk, reset : in st trigger, accept : in st	Library	C-c C-t li								
trigger, accept : in st active : out st	Loop	C-c C-t lo								
end entity trigger;	Мар	C-cC-tma								
	Next	C-cC-tne								
architecture rtl of trigger	Others (Aggregate)	C-cC-tot								
type state type is (sO,	Package (Decl)									
signal cur_state,	Package (Body)									
<pre>next_state : state_type;</pre>	Port	C-cC-tpo								
begin	Procedure (Body)	C-cC-tpb								
registers : process (clk,	Procedure (Decl)	C-cC-tpd								
begin	Process (Comb)	C-cC-tpc								
if (reset = '1') then	Process (Seq)	C-c C-t p s								
cur_state <= s0;	Report	C-cC-trp								
<pre>elsif rising_edge(clk) t cur state <= next stat</pre>	Dohuro	C-cC-trt								
end if:	Select	C-c C-t s s								
end process;	Signal	C-c C-t s i								
• ·	Subtype	C-c C-t s u								
process (cur state, trigge	Туре	C-cC-tty								
begin	Use	C-c C-t u s								
case cur_state is	Variable	C-cC-tva								
when s0 =>	Wait	C-c C-t w a								
active <= '0';	(Clocked Wait)	C-c C-t w c								
if (trigger = '1') t	When									
next_state <= s1;	While (Loop)	C-c C-t w l								
else	With	C-c C-t w i								
next_state <= s0;										

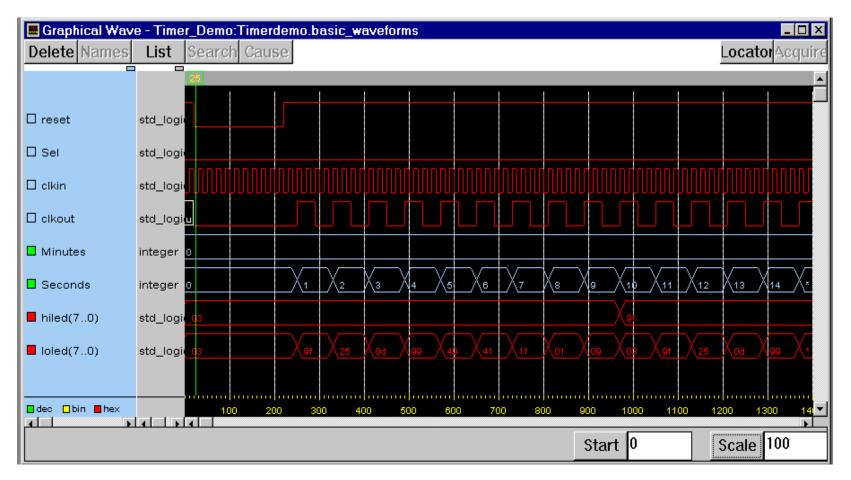

Block Diagram

- top-down
- bottom-up
- Contents of a block can be type of design unit
- Top-level block diagram:
 - Partitioning of the design
 - Connections between the underlying HDL design units

State Diagram



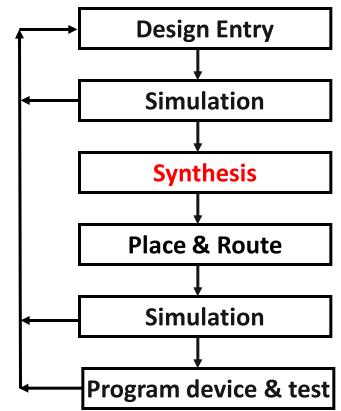
- Normally used to describe combinatorial logic
- Can also be used for sequential circuits (e.g. state machines)


■ Truth Table - STUDENT:decoder24 → ① ① ● ① ② ② ② ② ② ② ② ② ◎ ② ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎										
In		address	5							
	All	1	2	3	4	5	6	7		
	All	address	enable	data(0)	data(1)	data(2)	data(3)			
	1			NOT level	NOT level	NOT level	NOT level			
	2									
	3	"00"	11	level						
	4	"01"	41		level					
	5	"10"	41			level				
	6	"11"	41				level			
	7		'O'	'Z'	'Z'	'Z'	'Z'			
	8								•	
		•						Þ		

Functional simulation:

- simulate independent of FPGA type
- may postpone selection
- 🔷 no timing
- Timing simulation:
 - simulate after place and routing
 - detailed timing

Example of simulation waveforms. Test vectors are normally defined in a VHDL unit (testbench)

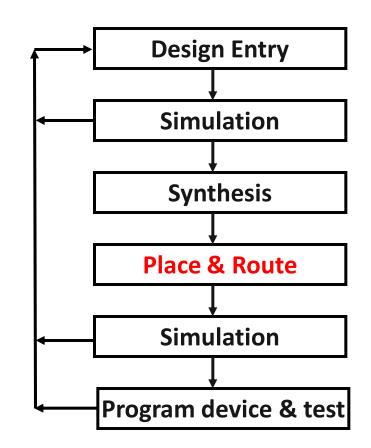

Input is RTL code

- Compilation & translation
 - Generates technology independent netlist
 - RTL schematic (HDL code analysis)
- Technology mapping
 - Mapping to technology specific structures:
 - Look-up tables (LUT)
 - Registers
 - RAM/ROM
 - DSP blocks

Other device specific components/features

Logic optimization

Implementation analysis (technology view)

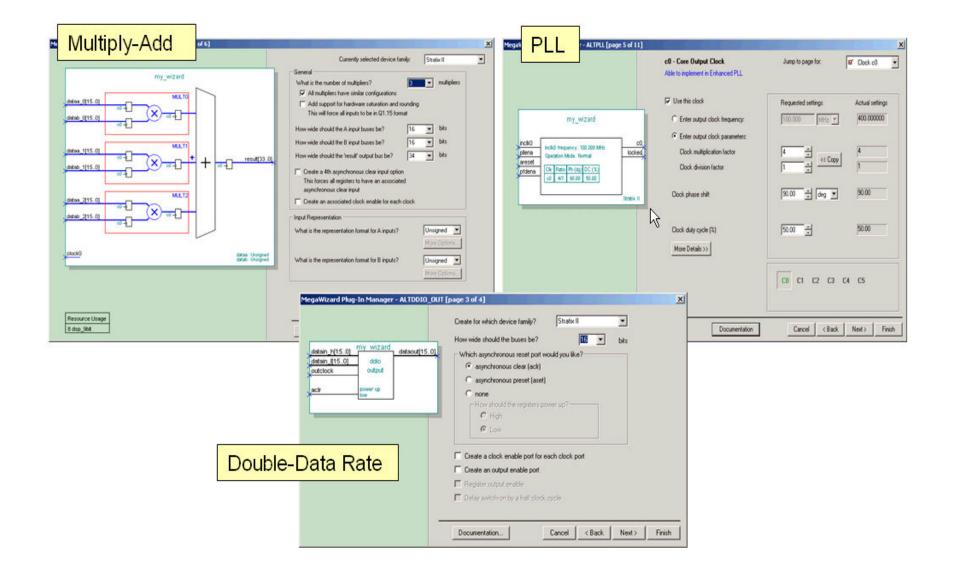


FPGA fitter

- Tools supplied by the FPGA vendor
- Specific for each FPGA device architecture

Functions

- Place-and-route
- Constraints editor
- Backannotated netlist for timing simulation
- Configuration bitstream


Macros:

- Generic pre-made design blocks:
 - e.g. PLL, FIFOs, DDR I/O, Multiply-accumulate, etc.
- Accelerate design entry and verification
- Pre-optimized for FPGA vendor architecture
- Provided at no cost by the FPGA vendor to optimize performance
- Instantiate block in the design:
 - Makes HDL code technology dependent

IP cores:

- More complex blocks: PCI-X interface, CPU, etc.
- Some are provided by the FPGA vendor
- IP cores from third party suppliers cost money
- Evaluation before buying usually possible

Macro Example

Many ready-made blocks for free

RAM/FIFO

UART

Can buy ready-made parts, just like IC's: IP Cores

- PCI interface
- Processors (8051-style up to RISC/ARM processors)
- FPGA's with extra dedicated hardware built-in
 - Gigabit serialiser
 - high-end processor with RAM

Handle different I/O standards

- LVDS, LVPECL, LVCMOS, LVTTL, PCI, PCI-X
- Programmable slew-rate, termination resistors

Trend in design tools

- Trying to design at a higher level of abstraction
- Starting from C/C++ or SystemC code
- Electronics for non-electronicians?

Sources of information

CERN technical training ELEC 2005: http://indico.cern.ch/conferenceDisplay.py?confld=62928

- Covers a lot of subjects, including optical links, EMC, description of experiments readout systems
- Includes a lot of references to books
- LEB/LECC/TWEPP workshops from last 12 years: http://lhc-electronics
 - workshop.web.cern.ch/lhc%2Delectronics%2Dworkshop/
 - Detailed presentations and wider plenary talks
- PH-ESE seminars:
 - http://indico.cern.ch/categoryDisplay.py?categId=1591
- Previous summer student lectures
- LHC (ATLAS and CMS) upgrades: ACES meeting

http://aces.web.cern.ch/aces/