we need a fast TMVA

Paul Seyfert

INFN Milano Bicocca

7th October 2016

7th October 2016

Make it faster

- Ghost probability must be computed fast (numbers for TMVA)
 - Neural network faster than BDT (40x)
 - Compile network instead of loading at runtime (4x)
 - Tune auto-generated network code by hand (2x)
 - Faster network activation function (uncharted, 4x)
- Drop support for >5yr old CPUs (10x)
 - → Make auto-generated code better?

New York, 07.07.2016

DS@HEP, Tracking@LHCb

Slide 10

disclaimer I

what i have to offer

- This is somewhat a review of TMVA evaluation speed observations I made at some point in the preparation of 2015 data taking for LHCb (only MLP)
- some things already went into TMVA
- some are ready as pull request (though review never harms)
- some will be hard to put into TMVA
- maybe we don't even want to:
 - more recent developments anyhow better?
 - future computing models? (single core was a MUST. I do one evaluation at a time, batch evaluation might be better ultimately)
 - some tuning steps might become nightmares in general
- code and stuff at
 - blog post
 - github pseyfert/tmva-mlp (the one network I optimised, go through the commit history!)
 - Our reconstruction code (...if you really want to read the original)
 - what I managed to pack into a pull request
 - what's merged already

disclaimer II

why I did what I did

- LHCb track reconstruction uses a NN to distinguish fake tracks from real tracks
- was deployed in the software trigger for 2015 (every bit of timing counts)
- the NN from 2012 was way too slow due to computation of the input variables
- so I was profiling the entire algorithm
- eventually I reached a point where the NN evaluation was the bottleneck (probably I could've stopped here)
- \blacksquare trigger runs several processes on each CPU (\rightarrow no multithreading for the individual process)
- I only looked at evaluations, no training.

how I did it

- code profiling in LHCb reconstruction is done with callgrind
 (I sometimes wonder why, because all computer scientists outside of HEP I know use
 different tools with different behaviour)
- I also experimented with the printout of gcc when enabeling autovectorisation
- google paper on NN evaluation speed optimisation

- just ran TMVAClassificationApplication with one method at a time (same events, same number of executions)
- \blacksquare minor adjustments to the code to run from the standalone .class.C

```
BDT with .xml 2 627 196 471
BDT with .class.C 427 128 646
MLP with .xml 65 365 395
MLP with .class.C 17 391 466
```

finding

- expected MLP to be faster than BDT (simple float point math vs. many ifs and branch misses)
- did not expect the .xml vs .class.C difference to be so large! (for MLP I think it makes sense in hindsight, for BDT I have no explanation)
- to be honest: went for .class.C because I didn't know how to tell our build framework (CMT) back in 2012 how to change link flags. .class.C was almost trivial in include.

Activation functions I

- After tuning long enough, calls to tanh appeared in the profiles
 - tanh known as super slow function in LHCb reconstruction (should be exterminated by now)
 - friend in human brain project confirmed, where they have CPU neurons, they cannot use anything related to exp
- naive me looked up sigmoid functions and went for $\frac{x}{\sqrt{1+x^2}}$ (sqrt is absurdely fast and available in SIMD units)
- Helge then added ReLU to TMVA (even faster)

function	default compiler options	AVX vectorisation by hand
tanh	19,355,124,355	n/a
$\frac{1}{1+e^{-x}}$	21,140,125,632	n/a
$\frac{x}{\sqrt{1+x^2}}(*)$	415,121,741	195,121,939
$\frac{\sqrt{1+x}}{x}$ $\frac{x}{1+ x }$	395,121,798	195,104,759
max(0,x)	155,095,875	115,095,891

Activation functions II

- \blacksquare output layer activation function depends on estimator type \Rightarrow remained something with exp for cross entropy
- Fine for training, but in application I'm spending CPU on a monotoneous transformation of the response (we do our own rarity transformation anyhow afterwards)
- changed by hand . . .

```
if (fEstimator==kMSE) fOutput = aChooser.CreateActivation("linear"); //zjh
else if (fEstimator==kCE) fOutput = aChooser.CreateActivation("sigmoid"); //zjh
double ReadMLP::ActivationFnc(double x) const {
    // activation function
    return x/sqrt(1.+x*x);
}
double ReadMLP::OutputActivationFnc(double x) const {
    // sigmoid
    return 1.0/(1.0+exp(-x));
}
```

- discussing at data science workshop with data scientists, output layer activation functions not considered too expensive
- changing the output layer activation function between training and application might cause more trouble than it's worth

$\mathsf{double} \to \mathsf{float}$

float precision faster than double (mostly ... friends in HBP reported there are exceptions) converted all doubles to floats

- converted an doubles to noat
- \Rightarrow 4 % speedup (wrt. initial version)

remove fLayerSize[i]

anyhow constant, hard code them

 \Rightarrow 8 % speedup (wrt. initial version)

reduce output layer weight matrix to vector and reorder loops

```
// (ayer 1 to 2
+ float buffer[27];
+ for (int i=0; i<27; i++) {
+ buffer[i] = secondmatrix[i] * fWeights[1][i];
+ }
for (int i=0; i<27; i++) {
- float inputVal = fWeightMatrixlto2[0][i] * fWeights[1][i];
- fWeights[2][0] += inputVal;
+ fWeights[2][0] += buffer[i];
}</pre>
```

(hint by vectorisation messages from compiler)

⇒ 14 % speedup (wrt. initial version)

output layer activation function (discussed before)

 \Rightarrow 16 % speedup (wrt. initial version)

reduce resetting and copying variables

```
//for (int l=0: l<fLavers: l++)</pre>
for (int i=0; i<27; i++) fWeights[1][i]=0.f;
for (int i=0: i<27-1: i++) fWeights[1][i]=0.f:
fWeights[2][0]=0.f;
//for (int l=0; l<fLayers-1; l++)
fWeights[1][27-1]=1:
for (int i=0; i<22-1; i++)
  fWeights[0][i]=inputValues[i];
fWeights[0][22-1]=1;
// layer 0 to 1
for (int o=0: o<27-1: o++) {
  float buffer[22];
  for (int i=0: i<22: i++) {
    buffer[i] = fWeightMatrixOtol[o][i] * fWeights[0][i];
    buffer[i] = fWeightMatrixOtol[o][i] * inputValues[i]:
```

 \Rightarrow 16 % speedup (wrt. initial version)

rarrange input variable normalisation

```
for (int ivar=0;ivar<21;ivar++) {
    float offset = fMin 1[cls][ivar];
    float scale = 1.0/(fMax_1[cls][ivar]-fMin 1[cls][ivar]);
    iv[indicesPut.at(ivar)] = (dv(ivar)-offset)*scale * 2 - 1;
    iv[ivar] = iv[ivar]-fMin 1[cls][ivar];
    iv[ivar] = iv[ivar]*fscale[cls][ivar] - 1.f;

also avoid copying from one vector to another (indicesGet/Put)
also overwrite input vector !!! (changed interface, no const)
also remove check of vector length !!!

⇒ 67% speedup (wrt. initial version)
```

more rarrangement of linear transformations

 \Rightarrow 67 % speedup (wrt. initial version)

challenge accepted

CHALLENGE ACCEPTED

writing SSE3 intrinsics code

 \Rightarrow 93 % speedup (wrt. initial version)

I am still amazed that the compiler couldn't do that

writing AVX intrinsics code

 \Rightarrow 95 % speedup (wrt. initial version)

- SSE 3 and AVX code didn't go into production (didn't want to write machine dependent code and introduce overhead code to determine the architecture)
- makes the code very dependent on number of neurons/variables
 - what's the remainder of nodes divided by four or eight
 - what's log₂ of it (for "horizontal adding")
- fun to do it for one network (challenging to do as much as possible in __m128 variables)
- write vectorised versions of activation function
- make the most use of each _mm_hadd_ps call

but to be serious

This should happen in some math library. I'm surprised Eigen didn't beat my code, though might be inefficient use of interfaces (esp. for activation function)

- only dealt with good old MLP
- parallel implementations might be the future, but single core SIMD is the NOW
- modular input transformations a bit of a barrier for making all tweaks generic
- fixed size arrays instead of vectors for interface, removed const-ness of input variables not trivial either
- scalability of .class.C networks??? (I'm not sure if I want to have many hard coded networks in my compiled code. reading from .xml seems more maintainable on the long run)

something completely different

automatised tmva response adding to ttrees

- github pseyfert/tmva-branch-adder (advertisement on roottalk)
- TMVA reader asks user to spell out order of input variables
 ✓ good sanity check
- but over the years it became anoying to write loops over ntuples by hand, in which branch variables get handed over to TMVA just to fill one more branch.
 ? but wait ... if the reader knows the name of the input variables ... it can also just get them itself
- ightarrow copy&pasted the variable-name checking code
- ightarrow feed variables into TTreeFormulas (such that also formulas get parsed)
- \Rightarrow add response to tree as new branch

future of this tool?

- I use it already
- so far a few limitations (aimed for command line, no good documented c++ interface, python experimental, cannot evaluate more than one MVA at a time)
- paranoia tests in place: never overwrite or update files (don't want to be responsible for files getting corrupted)