
we need a fast TMVA

Paul Seyfert

INFN Milano Bicocca

7th October 2016

Paul (INFN MIB) we need a fast TMVA 7th October 2016 1 / 15

New York, 07.07.2016 DS@HEP, Tracking@LHCb Slide 10

Make it faster
● Ghost probability must be computed

fast (numbers for TMVA)
– Neural network faster than BDT (40x)
– Compile network instead of loading at

runtime (4x)
– Tune auto-generated network code by

hand (2x)
– Faster network activation function

(uncharted, 4x)
● Drop support for >5yr old CPUs (10x)

→ Make auto-generated code better? BDT with .xml
BDT with .class.C

MLP with .xml
MLP with .class.C

MLP with improved .class.C
hand tuned MLP

AVX

100000

1000000

10000000

100000000

1000000000

10000000000

Lower is better

Sascha Stahl, PS at DS@HEP workshop 2016

Paul (INFN MIB) we need a fast TMVA 7th October 2016 2 / 15

disclaimer I

what i have to offer

This is somewhat a review of TMVA evaluation speed observations I made at some point in

the preparation of 2015 data taking for LHCb (only MLP)

some things already went into TMVA

some are ready as pull request (though review never harms)

some will be hard to put into TMVA

maybe we don’t even want to:

more recent developments anyhow better?
future computing models?
(single core was a MUST. I do one evaluation at a time, batch evaluation might be better
ultimately)
some tuning steps might become nightmares in general

code and stuff at

blog post
github pseyfert/tmva-mlp (the one network I optimised, go through the commit history!)
Our reconstruction code (. . . if you really want to read the original)
what I managed to pack into a pull request
what’s merged already

Paul (INFN MIB) we need a fast TMVA 7th October 2016 3 / 15

http://virgilio.mib.infn.it/~seyfert/when-the-mva-takes-too-long.html
https://github.com/pseyfert/tmva-mlp
https://gitlab.cern.ch/lhcb/Rec/tree/master/Tr/TrackTools/src
https://github.com/root-mirror/root/pull/121
https://sft.its.cern.ch/jira/browse/ROOT-7062

disclaimer II

why I did what I did

LHCb track reconstruction uses a NN to distinguish fake tracks from real tracks

was deployed in the software trigger for 2015 (every bit of timing counts)

the NN from 2012 was way too slow due to computation of the input variables

so I was profiling the entire algorithm

eventually I reached a point where the NN evaluation was the bottleneck (probably I

could’ve stopped here)

trigger runs several processes on each CPU (→ no multithreading for the individual process)

I only looked at evaluations, no training.

how I did it

code profiling in LHCb reconstruction is done with callgrind

(I sometimes wonder why, because all computer scientists outside of HEP I know use

different tools with different behaviour)

I also experimented with the printout of gcc when enabeling autovectorisation

google paper on NN evaluation speed optimisation

Paul (INFN MIB) we need a fast TMVA 7th October 2016 4 / 15

https://research.google.com/pubs/archive/37631.pdf

which method

just ran TMVAClassificationApplication with one method at a time

(same events, same number of executions)

minor adjustments to the code to run from the standalone .class.C

BDT with .xml 2 627 196 471

BDT with .class.C 427 128 646

MLP with .xml 65 365 395

MLP with .class.C 17 391 466

finding

expected MLP to be faster than BDT

(simple float point math vs. many ifs and branch misses)

did not expect the .xml vs .class.C difference to be so large!

(for MLP I think it makes sense in hindsight, for BDT I have no explanation)

to be honest: went for .class.C because I didn’t know how to tell our build framework

(CMT) back in 2012 how to change link flags. .class.C was almost trivial in include.

Paul (INFN MIB) we need a fast TMVA 7th October 2016 5 / 15

Activation functions I

After tuning long enough, calls to tanh appeared in the profiles

tanh known as super slow function in LHCb reconstruction (should be exterminated by now)
friend in human brain project confirmed, where they have CPU neurons, they cannot use anything
related to exp

naive me looked up sigmoid functions and went for x√
1+x2

(sqrt is absurdely fast and available in SIMD units)

Helge then added ReLU to TMVA (even faster)

function default compiler options AVX vectorisation by hand

tanh 19,355,124,355 n/a
1

1+e−x 21,140,125,632 n/a
x√
1+x2

(*) 415,121,741 195,121,939

x
1+|x| 395,121,798 195,104,759

max(0, x) 155,095,875 115,095,891

Paul (INFN MIB) we need a fast TMVA 7th October 2016 6 / 15

Activation functions II

output layer activation function depends on estimator type

⇒ remained something with exp for cross entropy

Fine for training, but in application I’m spending CPU on a monotoneous transformation of

the response (we do our own rarity transformation anyhow afterwards)

changed by hand . . .

discussing at data science workshop with data scientists, output layer activation functions

not considered too expensive

changing the output layer activation function between training and application might cause

more trouble than it’s worth

Paul (INFN MIB) we need a fast TMVA 7th October 2016 7 / 15

step by step

double → float

float precision faster than double (mostly . . . friends in HBP reported there are exceptions)

⇒ converted all doubles to floats

⇒ 4% speedup (wrt. initial version)

remove fLayerSize[i]

anyhow constant, hard code them

⇒ 8% speedup (wrt. initial version)

reduce output layer weight matrix to vector and reorder loops

(hint by vectorisation messages from compiler)

⇒ 14% speedup (wrt. initial version)

Paul (INFN MIB) we need a fast TMVA 7th October 2016 8 / 15

step by step

output layer activation function (discussed before)

⇒ 16% speedup (wrt. initial version)

reduce resetting and copying variables

⇒ 16% speedup (wrt. initial version)

Paul (INFN MIB) we need a fast TMVA 7th October 2016 9 / 15

rarrange input variable normalisation

also avoid copying from one vector to another (indicesGet/Put)

also overwrite input vector !!! (changed interface, no const)

also remove check of vector length !!!

⇒ 67% speedup (wrt. initial version)

more rarrangement of linear transformations

⇒ 67% speedup (wrt. initial version)

Paul (INFN MIB) we need a fast TMVA 7th October 2016 10 / 15

challenge accepted

writing SSE3 intrinsics code

⇒ 93% speedup (wrt. initial version)

I am still amazed that the compiler couldn’t do that

writing AVX intrinsics code

⇒ 95% speedup (wrt. initial version)

Paul (INFN MIB) we need a fast TMVA 7th October 2016 11 / 15

some words of caution

SSE 3 and AVX code didn’t go into production (didn’t want to write machine dependent

code and introduce overhead code to determine the architecture)

makes the code very dependent on number of neurons/variables

what’s the remainder of nodes divided by four or eight
what’s log2 of it (for “horizontal adding”)

fun to do it for one network (challenging to do as much as possible in m128 variables)

write vectorised versions of activation function

make the most use of each mm hadd ps call

but to be serious

This should happen in some math library. I’m surprised Eigen didn’t beat my code, though

might be inefficient use of interfaces (esp. for activation function)

Paul (INFN MIB) we need a fast TMVA 7th October 2016 12 / 15

Conclusion

only dealt with good old MLP

parallel implementations might be the future, but single core SIMD is the NOW

modular input transformations a bit of a barrier for making all tweaks generic

fixed size arrays instead of vectors for interface, removed const-ness of input variables not

trivial either

scalability of .class.C networks??? (I’m not sure if I want to have many hard coded

networks in my compiled code. reading from .xml seems more maintainable on the long

run)

Paul (INFN MIB) we need a fast TMVA 7th October 2016 13 / 15

something completely different

Paul (INFN MIB) we need a fast TMVA 7th October 2016 14 / 15

automatised tmva response adding to ttrees

github pseyfert/tmva-branch-adder (advertisement on roottalk)

TMVA reader asks user to spell out order of input variables

✓ good sanity check

but over the years it became anoying to write loops over ntuples by hand, in which branch

variables get handed over to TMVA just to fill one more branch.

? but wait . . . if the reader knows the name of the input variables . . . it can also just get

them itself

→ copy&pasted the variable-name checking code

→ feed variables into TTreeFormulas (such that also formulas get parsed)

⇒ add response to tree as new branch

future of this tool?

I use it already

so far a few limitations (aimed for command line, no good documented c++ interface,

python experimental, cannot evaluate more than one MVA at a time)

paranoia tests in place: never overwrite or update files (don’t want to be responsible for

files getting corrupted)

Paul (INFN MIB) we need a fast TMVA 7th October 2016 15 / 15

https://github.com/pseyfert/tmva-branch-adder
https://root.cern.ch/phpBB3/viewtopic.php?f=12&t=21344&sid=51494c352962fe467eecadb0277a41c7

