

Progress of SLS-2 Project

M. Aiba, M. Böge, M. Ehrlichman, C. Gough, Á. Saá Hernández, A. Streun 26.10.2016 LER2016 workshop at Soleil

SLS-2 project – Goals and Constraints

Goals

PAUL SCHERRER INSTITUT

- − Factor 20~50 lower emittance (5 nm \rightarrow 100~250 pm)
- Operation parameters as in the present SLS:
 Energy = 2.4 GeV, Current = 400 mA (top-up), Stability = 1 μm, etc.
- Constraints
 - Reuse the building \rightarrow Storage ring circum. = 288 m \otimes (3BA \rightarrow 7BA is not enough)
 - Reuse the injector chain (Gun, Linac and Booster) \rightarrow ϵ @ 2.4 GeV < 10 nm \odot

AB+LGB lattice (1)

$$\varepsilon \propto I_5 = \int_L |h(s)|^3 \mathcal{H}(s) ds$$

Dispersion's <u>betatron</u> amplitude

Orbit curvature
$$h(s) = B(s)/(p/e)$$

• Longitudinal field variation h(s) to compensate $\mathcal{H}(s)$ variation

 $\mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{2}$

Longitudinal Gradient Bend

Anti-Bend

AB+LGB lattice (2)

PAUL SCHERRER INSTITUT

Conventional cell vs. longitudinal-gradient bend/anti-bend cell

• both: angle 6.7°, E = 2.4 GeV, L = 2.36 m, $\Delta \mu_x = 160^\circ$, $\Delta \mu_y = 90^\circ$, $J_x \approx 1$

LGB modeling (1)

• Field description:

- Longitudinal gradient is included as a projection to the horizontal plane
- Higher order terms are strongly attenuated by $sin^n\theta$ term

LGB modeling (2)

- Two methods:
 - 1) Rbend: Face angles adjusted such that all faces are parallel in the lab frame.

(X-Y-Z)

- No K_{guad} or higher values.
- 2) Sbend: Faces are perpendicular to closed orbit, except for ends, which are parallel.
 - K_{quad} calculated from bend field data.
 - Simple extension to higher order focusing terms.

Both models agree with a tracking using the field map within 10⁻⁴ level

Lattice parameters (1)

Name	SLS*)	dc01a	fa01f
status	operating	baseline	fallback
Emittance at 2.4 GeV [pm]	5022	137 → 150 ^{•)}	262
Lattice type	TBA	7 BA	5 BA
Total absolute bending angle	360°	585°	488°
Working point Q _{x/y}	20.42 / 8.74	37.38 / 10.28	28.29 / 10.17
Natural chromaticities C _{x/y}	-67.0 / -19.8	-64.9 / -34.5	-64.1 / -39.9
Optics strain ¹⁾	7.9	5.8	8.9
Momentum compaction factor [10-4]	6.56	-1.41	-1.86
Radiated Power [kW] ²⁾	205	232	271
rms energy spread [10-3]	0.86	$1.03 \rightarrow 1.08^{\bullet)}$	1.15
rms bunch length [mm]	3.73	$2.72 \rightarrow 8.59^{\star)}$	3.15
damping times x/y/E [ms]	9.0 / 9.0 / 4.5	4.5 / 7.9 / 6.4	5.0 / 6.8 / 4.1

1) product of horiz. and vert. normalized chromaticities C/Q

2) assuming 400 mA stored current, bare lattice without IDs

*) SLS lattice d2r55, before FEMTO installation (< 2005)

 including intra-beam scattering for 1 mA bunch current (400 mA in 400 of 479 buckets; 500 MHz), 10 pm vertical emittance,

 3^{rd} harmonic cavity for $3\times$ bunch length.

PAUL SCHERRER INSTITUT Lattice parameters (2) 12 -0.04 Disp. η 0.03 10 0.02 0.01 Betafunctions [m] 0.00 Ξ -0.01 -0.01 -0.03 -0.04 -0.04 -0.05 Dispersi 6 -0.06 β_x -0.07 2 -0.08 -0.09 0 -0 20 40 60 80 5 superperiod 1/3 of ring \square dipole field **①optics** and 4 മ quad field at R = 13 mm[↑] magnetic fields 3 Poletip Field total |field| 2 one п Ο 20 40 60 80 Ο 5 S [m] E Superbends m LGB/AB-cell 3 Field in arcs 2/6/10 Poletip 3×5.5 T peak field Lattice dc01a

5

0

8

20

15

10

Nonlinear optimization (1)

Cancellation by cell tune

PAUL SCHERRER INSTITU

 Harmonic sextupoles situated outside achromat arc to suppress driving terms as much as possible

Nonlinear optimization (2)

- MOGA optimization
 - Baseline lattice has almost enough aperture at least with zero chromaticity

Variables for optimization

- 4 chromatic sextupole families
- 9 harmonic sextupole families
- 10 octupole families
- constraint on chromaticity: -2 variables
 →21 variables

Higher superperiodicity, i.e. 12, is considered →Talk by Michael Ehrlichman this afternoon

BPM layout

- BPM layout is determined taking into account:
 - Available space
 - Proper optics sampling
 - Pairing with correctors
 to lower required
 corrector kick

Imperfection study (1)

• Misalignment \rightarrow BBA

Optics distortion due to misalignments is tolerable after beam-based alignment

Imperfection study (2)

• K1 errors \rightarrow Optics correction

Optics distortion can be suppressed through LOCO style optics correction

Injection (1)

• Injection - Present SLS

- Booster beam emittance <10 nm 😳
- Challenge

	SLS	SLS-2
Straight section	~10 m	~5 m (Period 12)
Dynamic aperture	~10 mm	~5 mm
Septum thickness	3 mm	1.5 mm?

Injection (2)

Compact injection straight with "anti-septum"

Preliminary design found in backup slide

- Anti-septum wall thickness can be 1 mm:
 - Short pulse (6 µs, half sine)
 - Stray field comes after the injection bunch passes!

Injection (3)

Parameters assumed

- Septum thickness = 2.5 mm
- Kicker kick angle = 2.1 mrad \rightarrow 0.5m, 35 mT @ x ~ -5 mm
- Injection beam emitt. = 8 nm

Multipole/Nonlinear-kicker injection is also considered

Touschek lifetime

- Lifetime ~4.6 hours
 - Estimated from momentum aperture(6D track)
 - With 5% bucket
 - Without third harmonic cavity

Intra Beam Scattering – update (1)

- "Standard" simulation procedure
 - Compute IBS growth rate for one turn
 - IBS (diffusion) increases the momentum spread (<px²>, <py²>, <δ²>)
 - Add synchrotron radiation damping at the end of turn
 - For the transverse planes:

PAUL SCHERRER INSTITU

 $\epsilon = \epsilon_0 + d\epsilon_{\text{IBS}} + d\epsilon_{\text{SR}}$

 $d\epsilon_{\scriptscriptstyle SR}$ is computed for "given" equilibrium emittance and damping time

- For the longitudinal plane: $\delta = \delta_0 + d\delta_{\text{IBS}} + d\delta_{\text{SR}}$ and the bunch is "forcibly" fit to the RF bucket
- Continue the tracking until d $\epsilon_{\rm IBS}$ +d $\epsilon_{\rm SR}$ ~0 and d $\delta_{\rm IBS}$ +d $\delta_{\rm SR}$ ~0

- Faster simulation: $\varepsilon = \varepsilon_0 + N(d\varepsilon_{IBS} + d\varepsilon_{SR})$ (N~10-1000)

→Turn-by-turn envelope tracking with SR damping and IBS (a la SAD code)

Intra Beam Scattering – update (2)

PAUL SCHERRER INSTITU

Instability study

→Talk by Haisheng Xu tomorrow

Round beam operation

- A few beamlines are interested in Round beam
- Emittances in Mobius ring computed with envelope tracking (a la SAD):

Round beam operation is not so attractive for "high Jx" 😕

References

- LGB: A. Streun and A. Wrulich, "Compact Low Emittance Light Sources Based on Longitudinal Gradient Bending Magnets", NIM-A, 770 98-112 (2015)
- Anti-bend: J. P. Delahaye and J. P. Potier, "Reverse Bending Magnets in a Combined-function Lattice for the CLIC Damping Ring", PAC'89 / A. Streun, "The Anti-bend Cell for Ultralow Emittance Storage Ring", NIM-A, 737 148-154 (2014)
- MOGA for SLS-2: M. Ehrlichman, "Genetic Algorithm for Chromaticity Correction in Diffraction Limited Storage Rings", PRAB, 19 044001 (2016)
- Multipole kicker injection / Nonlinear kicker: H. Takaki et al., "Beam Injection with a Pulsed Sextupole Magnet in an Electron Storage Ring", PR-STAB, 13, 020705 (2010) / T. Atkinson et al., "Development of a Non-linear Kicker System to Facilitate a New Injection Scheme for the BESSY II Storage Ring", IPAC'11
- Envelope tracking: K. Ohmi, K. Hirata and K. Oide, "From the Beam-Envelope to Synchrotron-Radiation Integrals", Phys. Rev. E, 49 1 (1994)
- IBS: J.D. Bjorken, S.K. Mtingwa, "Intrabeam Scattering", Part. Acc. Vol. 13, pp. 115-143 (1983) / K. Kubo, K. Oide, "Intrabeam Scattering in Electron Storage Rings", PRST-AB 4, 124401 (2001)
- Mobius ring: R. Talman, "A Proposed Möbius Accelerator", PRL, 74 1590 (1995)

Summary

- SLS-2 design study is on a good track:
 - Target emittance is achievable with the given circumference
 - Baseline lattice is evaluated from the viewpoints of
 - Nonlinear optics
 - Top-up injection
 - Imperfections
 - Collective effects
 - Increasing (or restoring) superperiod to 12 is considered

Back up slides

Beam line source points

- Lateral shift of source points (when keeping circumference)
 - undulators $\approx 120 \text{ mm}$ out
 - bends $\approx 100 \text{ mm in}$
- Maintain at least undulator positions
 - circumference 288.00 \rightarrow 287.25 m
 - undulator source point shifts < 1 mm</p>
 - Harmonic number (500 MHz): $480 \rightarrow 478^{3}_{4} \rightarrow 479$
 - Frequency shift -261 kHz \rightarrow inelastic cavity deformation \checkmark
- Injection timing
 - booster: no frequency shift
 - wait for correct bucket and phase
 - delay max. ±1 ms 🖒 △p/p < 10⁻⁴ 🗸

Anti-septum

• Preliminary design

- locating pins for precise re-assembly
- all kickers with time waveforms matched to <1ppt at all times
- kickers 1-3 all fitted with stainless steel tubes so time waveform in remains matched
- only kicker 2 has injected bunch passing through shielded region in tube
- injected bunch-to-stored bunch separation 3-4mm

SR and IBS a la SAD

D

 SR and IBS effects are computed at each element

1) At all elements IBS: $\sigma_{beam} \rightarrow \sigma_{beam} + \Delta_{IBS}$

2-a) If the element is dipoles

Damping: $\sigma_{beam} \rightarrow (I - lD)\sigma_{beam}(I - lD)^T$ Transport & Diffusion: ſ

$$\sigma_{beam} \to M \sigma_{beam} M^T + \int M B M^T ds$$

2-b) If the element is not dipoles

Transport:
$$\sigma_{beam} \rightarrow M \sigma_{beam} M^7$$

3) Continue tracking until an equilibrium is reached

 $\Delta_{\chi'}, \Delta_{\gamma'}, \Delta_{\delta}$ are computed with IBS theory for given sigma matrix elements

Damping matrix						Y	F0	0	0	0	0	0		
(on-energy beam)						0	0	0	0	0	0			
	0	0	0	0	0	0]	B=	0	0	0	0	0	0	
Р		1	0	0	0			0	0	0	0	0	0	
$=\frac{1}{E_0}$	0	0	0	1	0	0		L0	0	0	0	0	B ₆₆ _	ł
20	0	0	0	0	0	0		<i>B</i> _c	6					
	G_{x}	0	G_{y}	0	0	2		- 0	00 [55	r	Ł	v ⁵	
$G_{x,y}$ include gradient						=		55	$=\frac{r_{e}}{r_{e}}$	$\frac{1}{2}$	Y			
and edge of bending					╢		24	ŀ√:	<u>3</u> n	ıс	$ \rho ^3$			
		-				- /								

Vacuum system

PSI Vacuum group

- High field bends (2 T n.c., 5.5 T s.c.)
 ⇒ antechambers.
- No NEG coating.

- Full copper or copper-coated stainless steel (at correctors).
- Discrete pumps, e.g. NEXTorr[®] on CF63 flanges.
- Maximum local pressure < 3 pbar after 1000 Ah of beam.
- Discrete crotch absorbers, e.g. GlitCop[®].
- Distributed absorbers on the inner side of the anti-bend chambers.

Absorbers and pumping ports

Existing SLS-girders

100 l/s NEXTorr[®] and sputter ion pumps.

Super-LGB cryostat

LGB design study

PAUL SCHERRER INSTITUT

PSI magnet group

