HEPS Top-up injection schemes

Zhe Duan

On behalf of HEPS accelerator physics group

presented at LER2016 Workshop Oct 26th 2016, Synchrotron SOLEIL

zhe.duan@ihep.ac.cn

Acknowledgements

Many thanks to instructive discussions with:

- SSRF: B. C. Jiang, S. Q. Tian, and Z. T. Zhao
- SLAC: A. W. Chao
- Jlab: R. Rimmer
- KEK: T. Kobayashi
- BNL: M. Blaskiewicz

The High Energy Photon Source (HEPS)

Design goal:

6 GeV, 1300 m, 200 mA beam current, 50 ~ 100 pm natural emittance

HEPS nominal design & parameters

References: G. Xu, et al., Proc. IPAC 2016, pp. 2886–2888. Y. Jiao, Chin. Phys. C, 40 (7): 077002. Y. Jiao and G. Xu, arXiv:1605.05021.

U0 = 2.5 MeV, w/ insertion devices in the first phase.

Table 1: HEPS lattice parameters

Parameters	Values
Energy E_0	6 GeV
Beam current I_0	200 mA
Circumference	1295.6 m
Natural emittance ε_{x0}	59.4 pm.rad
Working point v_x/v_y	116.16/41.12
Natural chromaticities (H/V)	-214/-133
No. of superperiods	48
ID section length $L_{\rm ID}$	6 m
Beta functions at ID sect. (H/V)	9/3.2 m
Energy loss per turn	1.995 MeV
Rms energy spread	7.97×10 ⁻⁴
Momentum compaction	3.74×10 ⁻⁵

Ring acceptance & injection schemes

Linear & nonlinear aspects are optimized via MOGA & MOPSO algorithms, the achieved dynamic aperture is insufficient for off-axis injection, but should be fine for on-axis injection schemes:

- Swap-out L. Emery and M. Borland, in Proc. PAC'03, pp. 256-258.
- Longitudinal injection M. Aiba, et al., PRSTAB, 18, p. 020701, 2016.

Double RF voltage adjustment B. C. Jiang, et

Effective DA ~2.5 mm in x and ~3.5 mm in y (bare lattice) *al.*, NIM A 814, 1,<u>2016.</u> 41.5 We proposed -2 41.4 an alternative -4 on-axis 41.3 y/mm 2 injection -6 41.2 scheme based -8 on a double-RF 41.1 -10 system G. Xu el al., IPAC'16, WEOAA02. 116.1 116.2 116.3 116.4 116.5 n 5 116 Z. Duan el al., eeFACT2016, TUT2H4. x/mm Oct 26th, 2016, Synchrotron SOLEIL, LER 2016 5

Longitudinal dynamics of a double-RF system

$$H(\phi, \delta; t) = \frac{h_f \omega_0 \eta}{2} \delta^2 + \frac{e\omega_0}{\pi E_b \beta^2} \left[\sum_{i=1}^{N_f} V_f^i \cos(\phi + \phi_f^i) + \frac{h_f}{h_h} \sum_{j=1}^{N_h} V_h^j \cos(\frac{h_h}{h_f} * \phi + \phi_h^j) + \phi \frac{U_0}{e} \right]$$

- Fundamental RF system: 166.6MHz, Nf=4
- 3rd harmonic RF system: 499.8MHz, Nh=2
- Same settings for cavities with the same frequency

$$V_f = 4V_f^i, \phi_f = \phi_f^i, V_h = 2V_h^i, \phi_h = \phi_h^i$$

- 4 free variables ($V_f, \varphi_f, V_h, \varphi_h$)
- One constraint to fix longitudinal phase of circulating beam relative to the cavities

 $V_f \sin \phi_f + V_h \sin \phi_h = U0$

• Longitudinal dynamics can be solved to achieve required RF acceptance, in particular, evolution between operation and injection modes.

A complete injection period

- An injection period takes about 200ms
 - Operation to injection: 20ms ~ 1 damping time
 - Injection Process: 100ms
 - Injection to mode 5: 20ms ~ 1 damping time
 - mode5 to operation mode : 60 ms ~ 3 damping time
- Injection process could be longer allowing multi-turn injection
- 20ms is only a tentative choice, could be shorter if RF system permits.

Evolution of beam parameters

200 mA, 648 bunches, IBS effect via SAD

- Since an injection period takes ~ 200ms, beam lifetime reduction is not a big issue.
- Bunch length is as low as
 2.8mm at injection mode w/o
 IBS.
- IBS induced beam parameter change might be an issue.
- Collective instability might be an issue too (under study).

Cases	w/o IBS	injection mode	operation mode	
ex (pm)	59.32	70.18	60.47	+ 8% ox
ey (pm)	5.96	6.91	6.06	+ 6% σγ
ey / ex (%)	10.04	9.85	10.02	
bunch length(mm)	2.8 / 32.0	3.01	33.03	
energy spread (1e-4)	7.96	8.57	8.03]+

Impact to user experiments is being evaluated. Gate signal can be sent to users during injection.

RF parameters in a complete injection period

Beam loading effects

- $(V_f, \varphi_f, V_h, \varphi_h)$ are combination of generator voltages and phases, with beam-induced voltages and phases.
- Cavity coupling β and tuning angle should be optimized to reduce power reflection and thus required generator power.

optimal β and tuning angle

ĩ,

Fig. 3.13. Diagram showing the vector addition of generator and beam-loading voltages in an RF cavity.

optimal tuning angle but not optimal β

Ñh

RF parameter table

Parameter	Fundamental RF Cavity (4 cavities)	3rd Harmonic RF Cavity (2 cavities)	200 — 166.6MHz ↓ 150 — 499.8MHz
frequency(MHz)	166.6	499.8	er cavity 100
Q0	5e8	1e9	d solution
R/Q	135.8	93.5	
Max beam power per cavity P _{beam} (kW)	112.2	178.0 <u>•</u>	Notes on the parameter table: β, QL, tuning angle ψ, are calculated
Cavity Voltage at maximum beam power V (MV)	0.66	v 1.32	alues, assuming optimal coupling at naximum beam power per cavity. • For fundamental RF cavities, this corresponds to the operation mode.
β	17293.4	9490.9	• For 3rd harmonic RF cavities, this corresponds to the injection mode.
QL	28912.8	105364.	$P_{a} = \frac{V^{2}}{V}$
cavity filling time(μ s)	55	67	$2R_s$ R_beam
optimal tuning angle ψ (degree)	-32.29	-47.77	$\rho = - P_c$
	oct 26th, 2016, Syn	chrotron SOLEIL, L	ER 2016 11

RF control loop

- Time scales
 - cavity filling time (~ tens of μs)
 - amplitude and phase control loops response very fast, ~ tens of μ s
 - frequency control loop
 - mechanical tuner: slow, ~ second
 - piezo: fast, <ms, limited dynamic range: BEPCII 500MHz cavity: ~6kHz
- In an injection period, required cavity frequency change exceed piezo range

The RF power w/ fixed tuning angle during injection

Incident and reflected power in transmission line can be calculated with:

$$P_{\pm} = \frac{\beta V_c^2}{8R_s} \left[(1 + \frac{1}{\beta} + \frac{2R_s I_0}{\beta V_c} \cos \phi)^2 + (\tan \psi + \frac{2R_s I_0}{\beta V_c} \sin \phi)^2 \right]$$

Discussion on RF control

- After injection, the tuning angle of harmonic cavities can be shifted from -47.8degree to 81.3 degree, with mechanical tuner, in seconds. As a result, the incident power per harmonic cavity can be reduced from 116kW, to 11.8kW.
 - Require RF amplitude and phase control to work together with frequency control, to keep the same Vc and φ.

Injection mode and requirements on kicker

Requirements on injection kicker system:

- Full pulse width < 6 ns
- pulse fall time < 2.5 ns

Current design: stripline kickers + high-voltage fast pulser

Reference:

B. I. Grishanov, *et al.*, "Very fast kicker with high repetition rate for accelerator applications", *Nucl. Instrum. Meth. A*, vol. 396, pp. 28–34, Sep. 1997.

V. M. Efanov, et al., in Proc. IPPC'97, pp. 988–991. FIDGmbH, http://www.fidtechnology.com

High voltage fast pulser by FID GmbH

Injector specifications

Top-up considerations

Requirements: ~ 0.2 % beam current stability, beam current = 200mA

Preliminary estimation of beam lifetime w/ optimal lengthening.

parameters	648 bunches	60 bunches
charge	1.33 nC	14.4 nC
lifetime (during operation)	30 hours	3 hours
refill time	3.5 min	20 second
tentative injection shots in each refill	4	2
tentative bunch filled in each refill	30 * 4 = 120	30 * 2 = 60
injection time	200 ms *4	200 ms *2
total duration of each refill	9 s * 3 =27 s	9s * 1 = 9 s

Summary

- Extensive studies have been done on various aspects of the longitudinal on-axis injection scheme with a double RF system.
- R&D on 166.6 MHz superconducting RF cavities & injection kickers are being done at IHEP.
- Underway study:
 - Simulation of dynamic aperture at the injection condition, based on which tolerances of injection errors will be analyzed.
 - Evaluation of possible collective effects with the very small bunch length during injection.
 - Estimate the impact of injection to user experiments.
- Swap-out injection scheme is also being considered.
- Alternative lattice design with high-beta insertions to accommodate offaxis pulsed-multipole injection scheme is also under way.

Thank you for your attention!

Injection mode compared to Aiba-san's scheme

Injection kicker:

- full pulse width < 6 ns
- pulse fall time < 2.5ns.

- Much smaller αc leads to more stringent requirements on MA.
- Or more stringent requirements on kicker pulse fall time -> more pieces of stripline kicker, Challenging!

RF parameters for different U0

U0 (MeV/turn)	RF bucket heights	166MHz peak power (kW)	166MHz peak voltage (MV)	500MHz peak power (kW)	500MHz peak voltage(MV)
2.0(w/o ID)	3%	112*4	0.7*4	178*2	1.4*2
2.0(w/o ID)	3.5%	112.5*4	0.7*4	155*2	1.2*2
2.5(ID in first stage)	3%	141*4	0.85*4	225*2	1.6*2
2.5(ID in first stage)	3.5%	141*4	0.85*4	196*2	1.4*2
3.0(ID in possible upgrade)	3%	169*4	1.0*4	275*2	1.9*2
3.0(ID in possible upgrade)	3.5%	169*4	1.0*4	256*2	1.8*2

For U0=2.5MeV/turn, RF bucket height=3.5%:

- peak reflected power of each 166MHz cavity =23kW
- peak reflected power of each 500MHz cavity=151kW, can be reduced to 39kW by optimal tuning after injection

SAD vs. ibsEmittance (injection mode)

Ib =200mA, 166.6 MHz cavity + 499.8 MHz cavity, 3% RF bucket height

Cases	w/o IBS	60 bunches w/ IBS		648 bunches w/ IBS	
Parameters		SAD	ibsEmittance	SAD	ibsEmittance
ex (pm)	59.32	111.26	117.98	70.18	69.77
ey (pm)	5.96	10.48	11.80	6.91	6.977
ey / ex (%)	10.04	9.42	10	9.85	10
bunch length(mm)	2.8	3.7	3.89	3.01	3.11
energy spread (1e-4)	7.96	10.55	11.06	8.57	8.84

- In SAD, approximate with one 720MHz RF cavity to keep bunch length=2.8mm w/o IBS.
- The longitudinal distribution deviates from Gaussian a little, and it is good approximation to replace double RF with a single RF keeping the same bunch length.

SAD vs. ibsEmittance (operation mode)

Ib =200mA, 166.6 MHz cavity + 499.8 MHz cavity, 3% RF bucket height

Cases	w/o IBS	60 bunches w/ IBS		648 bunches w/ IBS	
Parameters		SAD	ibsEmittance	SAD	ibsEmittance
ex (pm)	59.32	69.50	69.14	60.47	56.04
ey (pm)	5.96	6.85	6.91	6.06	5.60
ey / ex (%)	10.04	9.85	10	10.02	10
bunch length(mm)	32.0	35.11	35.41	33.03	31.50
energy spread (1e-4)	7.96	8.53	8.81	8.03	8.09

- In SAD, approximate with one 108 MHz RF cavity to keep bunch length=32 mm w/o IBS.
- Need to check with Monte-Carlo simulation available in Elegant.

Injection region layout

Linac main parameters

Parameter	specification
Rf frequency (MHz) (s-band)	2998.8 (or 2856)
Single bunch Charge (nC)	≥7.2 *
Energy (MeV)	≥300
Relative energy spread (%)	≤0.5 (rms)
Repetition rate (Hz)	300
geometric emittance (nm.rad)	≤70
Pulse to pulse time jitter(ps)	≤100

LMA

RF bucket height is set to 3.5%, single-frequency RF

Local momentum acceptance along a single 7BA for the bare lattice of present nominal HEPS storage ring design, with the limitation of integer resonances into account. In this tracking, RF and synchrotron radiation are turned on.

