Summary of LERD at LER2016 low emittance ring desing

R. Bartolini

Diamond Light Source and John Adams Institute, University of Oxford

LER - SOLEIL Paris, 28th October 2016

Low Emittance Ring Design

5 sessions – 25 talks; topics:

Commissioning/operation results (MAX IV, NSLS-II)

Updates/design progress (SIRIUS, SOLEIL, APS-U, CHESS, Diamond II, ALS U, HEPS, ELETTRA2.0, DIAMOND II, Spring-8, Lit-J)

Optimisation tools (Huang, Ehrlichmann, Hua-Yu, ...)

Analysis of performance (ESRF optics, ESRF-EBS lifetime, Spring-8 injection, Top-up injection in HEPS, V emittance APS, crab cavities at SPEARIII)

https://indico.cern.ch/event/574973/

LER - SOLEIL Paris, 28th October 2016

MAX IV commissioning (S. Leemann)

3 GeV Storage Ring Commissioning (cont.)

MAX IV commissioning (S. Leemann)

3 GeV Storage Ring Commissioning (cont.)

- First two IVUs installed during Feb 2016 shutdown
 - Hitachi, 18 mm period, 4.2 mm magnetic gap, 2 m length, 1.3 T peak field
 - for BioMAX and NanoMAX beamlines
- ID, FE & BL commissioning started Apr 2016

Sirius progress (F. E. De Sa)

Sirius building (Aug. 2016)

		And the state of t
A STREET		
· · · · · · · · · · · · · · · · · · ·		
	GAGS	
		A A A A A A A A A A A A A A A A A A A
Budget		
Accelerators 94 M €		Schedule Jan.2015 start of building construction
13 beamlines 133 M € Building 200 M €		 Sep.2017 start of machine installation Aug.2018 start of SR commissioning
• Human Res 53 M €	1 ANTE WES	Jan.2019 phase 1 operation (20 mA, NCC)
• Total 480 M €	CHE IN I	Jul.2019 phase 2 operaton (100 mA, SCC)

Sirius progress Magnets (F. E. De Sa)

Partnership LNLS/WEG

LNLS: simulation, design & magnetic measurement

Sirius progress Magnets (F. E. De Sa)

Magnets production

- A strategic decision for the production of Sirius magnets was to start with the booster magnets with tolerance requirements approaching the ones required for the storage ring.
- Delivery of all booster magnets will be completed by Dec. 2016.

Sirius progress Vacuum (F. E. De Sa)

Fully NEG coated strategy with copper chamber

6th Low Emittance Rings Workshop (LOW eRING 2016)

Synchrotron SOLEIL, France, October 26th-28th, 2016.

Keyhole design

0.3 mm SS sector For fast orbit correctors

ALS-U (D. Robin)

ALS-U Timeline and Status

Jul 2013	BESAC Subcommittee on Future X-ray Pages from sxr_workshop_report.pdf "The Office of Basic Energy Sciences should ensure that U.S. storage ring x-ray sources reclaim their world leadership position."
Oct, 2014	Workshop on Soft X-ray Science Opportunities using Diffraction-Limited Storage Rings, LBNL – result presented at Feb 2015 BESAC Meeting
Since FY14	Received funding from LBNL for R&D as well as pre-project development. In FY16 received funding from BES for Research and Development for the Advanced Light Source Upgrade
Jun 2016	BESAC Prioritization Panel grades ALS-U as "Absolutely Central" to contribute to world leading science and as "Ready to Initiate Construction"

Sep 2016 ALS-U receives approval of Mission Need (CD-0) from DOE/BES

ALS-U lattice design (M. Venturini)

8BA DA is superior to 9BA's in spite of larger chromaticites

SOLEIL plan (A. Nadji)

SULLEIL

Lattice based on 7BA (à la ESRF) and 6BA (à la Diamond)

SOLEIL plan (A. Nadji)

Strategy

The Final requirements should derive from future science goals.

Target date: 2025

□ First directions:

- Higher brilliance and coherence fraction.
- Short « intense » pulses.

ELETTRA 2.0 plan (E. Karantsoulis)

2 principal configurations

ELETTRA 2.0 plan (E. Karantsoulis)

Physical interference control

Old concrete support bases will not be reused, new girders will be constructed, propose 3D because magnets are thin.

Online dynamics optimisation (X. Huang)

Coupling correction experiments on SPEAR3 with RCDS

SLAC

Online dynamics optimisation (X. Huang)

Applications of RCDS on real-life problems

- SPEAR3
 - Kicker bump matching
 - Transport line optics
 - Transport line steering
 - GTL steering and optics
 - Injection efficiency w/ sextupoles
- LCLS
 - Undulator taper optimization J. Wu, K. Fang, X. Huang, 2014-2016
- BEPC-II luminosity optimization
 - Steering and coupling H. Ji, et al, Chinese Physics C 2015 Vol. 39 (12)
 - Interaction point beta
- ESRF

S. M. Liuzzo, et al, IPAC'16, THPMR015

X. Huang, J. Safranek, PRSTAB 18, 084001 (2015)

- beam lifetime w/ sextupoles
- Injection steering

SLAC

Two frequency crab cavity scheme (X. Huang)

A. Zholents, NIMA 798, 111 (2015)

Advantages of the new scheme:

- (1) Short pulses are available all around the ring.
- (2) No strict phase advance requirement for lattices.
- (3) Crab cavities occupy only one straight section (and only one cryostat for SRF)
- (4) Both cavities contribute to tilting (less total deflecting voltage required)
- (5) Beamlines can easily switch between short pulse mode and regular mode.

ESRF-EBS lifetime/losses analysis (R. Versteegen)

V. VACUUM LOSSES AND CONDITIONING

- Vacuum losses will be dominant over Touschek losses during the commissioning and conditioning of the new machine,
- Following a similar method as for Touschek scattering, scattered electrons can be generated and tracked after colliding with residual gas atoms,
- It includes a detailed pressure profile along the ring, as well as a custom gas composition,
- The losses are determined by
 - the vertical angle acceptance for elastic collisions,
 - by the negative side of the momentum acceptance for the inelastic collisions.

HEPS Injection studies (Z. Duan)

Two RF systems 3rd HC – play with amplitude and phase to manipulate RF buckets for on axis injection and operation IBS induced parameter changed at injection (Top-Up)

Longitudinal dynamics of a double-RF system

$$H(\phi, \delta; t) = \frac{h_f \omega_0 \eta}{2} \delta^2 + \frac{e\omega_0}{\pi E_b \beta^2} \left[\sum_{i=1}^{N_f} V_f^i \cos(\phi + \phi_f^i) + \frac{h_f}{h_h} \sum_{j=1}^{N_h} V_h^j \cos(\frac{h_h}{h_f} * \phi + \phi_h^j) + \phi \frac{U_0}{e} \right]$$

- Fundamental RF system: 166.6MHz, Nf=4
- 3rd harmonic RF system: 499.8MHz, Nh=2
- Same settings for cavities with the same frequency

$$V_f=4V^i_f, \phi_f=\phi^i_f, V_h=2V^i_h, \phi_h=\phi^i_h$$

- 4 free variables $(V_f, \varphi_f, V_h, \varphi_h)$
- One constraint to fix longitudinal phase of circulating beam relative to the cavities

 $V_f \sin \phi_f + V_h \sin \phi_h = U0$

 Longitudinal dynamics can be solved to achieve required RF acceptance, in particular, evolution between operation and injection modes.

Semi-analytical approach to nonlinear dynamics (L. Hua Yu)

Write one turn map of Taylor expansion as square matrix

Simplest example of nonlinear map :

 $\begin{aligned} x &= x_0 \cos \mu + p_0 \sin \mu + \epsilon x_0^2 \sin \mu \\ p &= -x_0 \sin \mu + p_0 \cos \mu + \epsilon x_0^2 \cos \mu' \end{aligned}$

Use z = x - ip and $z^* = x + ip$

$$\begin{split} z &= e^{i\mu} z_0 - \frac{i}{4} \epsilon e^{i\mu} z_0^2 - \frac{i}{2} \epsilon e^{i\mu} z_0 z_0^* - \frac{i}{4} \epsilon e^{i\mu} z_0^{*2} \\ z^* &= e^{-i\mu} z_0^* + \frac{i}{4} \epsilon e^{-i\mu} z_0^2 + \frac{i}{2} \epsilon e^{-i\mu} z_0 z_0^* + \frac{i}{4} \epsilon e^{-i\mu} z_0^{*2} \\ z^2 &= e^{2i\mu} z_0^2 - \frac{i}{2} \epsilon e^{2i\mu} z_0^3 - i \epsilon e^{2i\mu} z_0^2 z_0^* - \frac{i}{2} \epsilon e^{2i\mu} z_0 z_0^{*2} \\ zz^* &= z_0 z_0^* + \frac{i}{4} \epsilon z_0^3 + \frac{i}{4} \epsilon z_0^2 z_0^* - \frac{i}{4} \epsilon z_0 z_0^{*2} - \frac{i}{4} \epsilon z_0^{*3} , \\ z^{*2} &= e^{-2i\mu} z_0^{*2} + \frac{i\epsilon}{2} e^{-2i\mu} z_0^2 z_0^* + i\epsilon e^{-2i\mu} z_0 z_0^{*2} + \frac{i\epsilon}{2} e^{-2i\mu} z_0^{*3} \\ z^3 &= e^{3i\mu} z_0^3 & \\ \dots \\ z^{*3} &= e^{-3i\mu} z_0^{*3} \\ \tilde{Z} &= (1, z, z^*, z^2, zz^*, z^{*2}, z^3, z^2 z^*, zz^{*2}, z^{*3}). \longrightarrow Z = MZ_0, \end{split}$$

Fast computation of nonlinear dynamic quantities (detuning, action variations, ...)

Conclusions

Many excellent talks (cannot fit in this short summary)

MAX IV well in its commissioning, SIRIUS and ESRF-EBS being built

Many projects in design phase. Slowly but steadily gaining approval

APS–U CD1 February 16 ALS–U CD0 September 16

Optimisation !

from lattice design to operation

LERD topical workshop in Lund 1-2 December

https://indico.maxiv.lu.se/event/193/

Topical workshop on lattice design Lund 1-2 December 2016

