

Low Emittance Ring Technologies Summary

Andreas Jankowiak
Helmholtz-Zentrum Berlin / BESSY

LER 2016 SOLEIL 26.-28.10.16

Menu

LERT session talks

Review of ALERT2016

Emanuel Karantzoulis (ELETTRA)

Magnet development for ESRF-EBS

Joel Chavanne (ESRF)

SRF system development for BESSY VSR

Adolfo Velez (HZB)

X-ray beam size monitors with a dedicated source wiggler

James Crittenden (Cornell)

Injection/Extraction kickers and harmonic cavities for ALS-U

Stefano DeSantis (ALS)

Design of a fast pulsed kicker for HEPS

Hua Shi (IHEP)

Commissioning of MAX IV 3 GeV ring subsystems

Magnus Sjöström (MAX IV)

Creating round beams by linear coupling

Peter Kuske (HZB / BESSY)

Summary

And some other topics in talks of other sessions

Main topics

Relation to industry (ALERT2016 workshop)

(R&D collaboration, technology transfer, spin-off, ...)

Injection technology

(kickers, pulser, septa)

Magnets of all kinds

(resisitive, PM, modification of existing = e.g. Anti Septum SLS2)

Cavities for different purposes

(crab, multi-cell high gradient, "harmonics")

Others

(diagnostics, collimators, ...)

Round beam generation

organisational issues and the human factor

(it is all about the people)

Injection technology

Fast (ns) strip line kickers and pulser for swap-out injection and ...

- stability, reliability, ...
- beam tests ongoing

Magnets I

resitive magnets of many different kinds

- high gradient, "combined function", ...
- relying on highest manufacturing precision
- precise magnetic field measurement for development work and quality control
- are we at the limit? What next?

permanent magnets

- large scale installation
- stability, field quality
- longterm rad. hard.

Magnets II

superconducting magnets

- e.g. longitudinal gradient dipole with up to 6T

insertion devices

- force free P.M. IDs
- fixed gap IDs

In general:

- have seen very large variety of different designs (resistive, P.M., sc)
- would be interesting to have an overview on existing designs and achievable parameters?

Cavities – Harmonic cavities and others

sc / nc. crab cavities

- short photon pulses
- bunch separation

sc cw multi cell, high gradient cavities

- short electron pulses
- beating schemes for variable pulses

somewhat uncharted territory / ongoing large effort necessary / waiting for integration in storage ring and beam tests

Possible usage in DLSR machines?
There is a user community asking for high the rep. rate and very stable short pulses (ps) from our storage rings.

Diagnostics / Collimators / ...

collimators

- to cope with radiation issues due to beam lifetime in existing enclosures
- reliable, compact design needed
- shielding and activation issues

diagnostics

 Bunch By Bunch (BBB) and Turn By Turn (TBT) data position, beam size, length, current, CSR, ...

Not only WE need to develop further

We must keep an eye on this and push our colleagues to make really the best out of what the new/upgraded machines will deliver!

MAX IV subsystem commissioning

Magnus Sjöström

From first design, over prototyping, conceptual design, project planning, implementation phase, commission, operation:

It is all about the people!

