Standard Model I

 Introductory LectureCERN Summer Student Programme July 20， 2009
Hitoshi Murayama（IPMU Tokyo \＆Berkeley）

Plan

- Today is mostly a review of things you already know with a few extra
- Quantum ElectroDynamics (QED)
- Strong interaction
(QCD = Quantum ChromoDynamics)
- Weak interaction (Electrowork Theory)
- Flavor physics

Hierarchy of scales

- distance scales in Nature

Hierarchy of scales

- distance scales in Nature

Hierarchy of scales

Hierarchy of scales

Hierarchy of scales

- distance scales in Nature

Hierarchy of $10^{23} \mathrm{~m}$

$10^{27} m$
BERKELEY C
scales $\quad 10^{20} \mathrm{~m}$

$10^{-10} \mathrm{~m}$

- distance scales in Nature

Hierarchy of

$$
10^{-15} \mathrm{~m}
$$

Hierarchy of

- distance scales in Nature

$10^{-19 \mathrm{~m}}$

Hierarchy of

$$
10^{-19} \mathrm{~m}
$$

Hierarchy of

$$
10^{-19} \mathrm{~m}
$$

Particle Physics

Particle Physics

- What are things made of?

Particle Physics

- What are things made of?
- Why do they stick together to build things around us?

Particle Physics

- What are things made of?
- Why do they stick together to build things around us?
- discipline to study the constituents and forces among them

Particle Physics

- What are things made of?
- Why do they stick together to build things around us?
- discipline to study the constituents and forces among them
- tear things down, see what make them up

Particle Physics

- What are things made of?
- Why do they stick together to build things around us?
- discipline to study the constituents and forces among them
- tear things down, see what make them up
- See how they interact with each other

Particle Physics

- What are things made of?
- Why do they stick together to build things around us?
- discipline to study the constituents and forces among them
- tear things down, see what make them up
- See how they interact with each other
- everything should be understood based on their fundamental constituents and forces

Particle Physics

- What are things made of?
- Why do they stick together to build things around us?
- discipline to study the constituents and forces among them
- tear things down, see what make them up
- See how they interact with each other
- everything should be understood based on their fundamental constituents and forces
- We need it to understand the Universe

Uroborus' snake

Einstein's Dream

Einstein's Dream

- Is there an underlying simplicity behind vast phenomena in Nature?

Einstein's Dream

- Is there an underlying simplicity behind vast phenomena in Nature?
- Einstein dreamed to come up with a unified description

Einstein's Dream

- Is there an underlying simplicity behind vast phenomena in Nature?
- Einstein dreamed to come up with a unified description
- But he failed to unify electromagnetism and gravity (GR)

planets apple
 gravity mechanics

electric
 electromagnetism

atoms
 Quantum mechanics

magnetic
β-decay
α-decay

atoms
electric magnetic electromagnetism

Quantum mechanics

$$
\gamma \text {-decay }
$$

Special relativity
β-decay
$\alpha-$ decay
planets apple

electric magnetic

$$
\gamma \text {-decay }
$$

Special relativity
β-decay
α-decay

planets apple gravity mechanics

Special relativity
atoms
electric

electromagnetism
Quantum mechanics

α-decay

RWNe are just about to achieve another layer of unification

HERA ep collider

- Unification of electromagnetic and weak forces
\Rightarrow electroweak theory
- Long-term goal since '60s
- We are getting there!
- The main missing link: Dark Field=Higgs

Fermi's dream era

- Fermi formulated the first theory of the weak force (I932)
- The required energy scale to study the problem known since then: ~TeV
- We are finally getting there with LHC!

Ancient Greeks:

 Elements

Periodic Table

So many flavors of atoms?

Rutherford (New Zealand)

all chemical elements

deeper into the heart of the matter (literally)

deeper into the heart

of the matter (literally) increase resolution

deeper into the heart

of the matter (literally) increase resolution

Einstein?

deeper into the heart

of the matter (literally) increase resolution

Einstein?

My son on Halloween!

resolution=energy

- Quantum Mechanics: particle=wave

- higher energy
= shorter wavelength
= better resolution

Things around us

Muons

Muons

About a thousand of them go through our body every minute like X-ray.

Science 167, 832 (I970)

Search for Hidden Chambers in the Pyramids

The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption.

Luis W. Alvarez, Jared A. Anderson, F. El Bedwei, James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid, Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy, Ali Hilmy Moussa, Mohammed-Sharkawi, Lauren Yazolino
of th under Snow Th posal Unite States U.S.A 1966. stalled Secor of 19 Sham of C cheol ment had June contr sever ray d netic a fev larges

Science I67, 832 (1970)

Search for Hidden Chambers in the Pyramids

The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption.

Luis W. Alvarez, Jared A. Anderson, F. El Bedwei, James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid, Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy, Ali Hilmy Moussa, Mohammed-Sharkawi, Lauren Yazolino

The three pyramids of Giza are situ- mun in the 9th century A.D., almost

Science 167, 832 (1970)

Search for Hidden Chambers in the Pyramids

The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption.

Luis W. Alvarez, Jared A. Anderson, F. El Bedwei, James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid, Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy, Ali Hilmy Moussa, Mohammed-Sharkawi, Lauren Yazolino

The three pyramids of Giza are situ- mun in the 9th century A.D., almost

Science I67, 832 (I970)

Search for Hidden Chambers in the Pyramids

The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption.

Luis W. Alvarez, Jared A. Anderson, F. El Bedwei, James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid, Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy, Ali Hilmy Moussa, Mohammed-Sharkawi, Lauren Yazolino

of $t h$ under Snow Th posal Unite
States U.S.A 1966. stalle Secor of 19 Sham of C cheol ment had June contr sever rav d

Science I67, 832 (I970)

Search for Hidden Chambers in the Pyramids

The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption.

Luis W. Alvarez, Jared A. Anderson, F. El Bedwei, James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid, Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy, Ali Hilmy Moussa, Mohammed-Sharkawi, Lauren Yazolino
of th under Snow Th
posal Unite States U.S.A 1966. stalle Secor of 19 Sham of C cheol ment had June contr sever rav d

Monitor a volcano

- See through a volcano using muons
- University of Tokyo group demonstrated that one can monitor
 movement of magma insider a volcano in a southern island
- can predict eruption!

Monitor a volcano

- See through a volcano using muons
- University of Tokyo group demonstrated that one can monitor movement of magma insider a volcano in a southern island
- can predict eruption!

It's A Smail World? Messy

It's A Smail World?
 Messy

It's A Smail World? Messy

tau 1975

It's A Smaili World?
 Messy

electron

It's A Smail

top
1995
tau

muon
strange
bottom

electron

Standard Model

- triumph of 20th century physics
- most successful physical theory ever
- describes three forces:
- electromagnetism
- strong
- weak
- Particle Data Group complies more than 24,000
measurements from more than 7,000 papers, all agree with the SM except for a few but we see problems in the 2 I st century

ELEMENTARY PARTICLES

Some Basic Concepts

two pillars

- Two pillars in 20th century physics
- relativity (Einstein)
- quantum mechanics (Bohr, Heisenberg, Schrödinger, Pauli, Dirac,)
- Only way to combine them together is Quantum Field Theory
- very different way to describe nature from most people are used to

Conservation of Energy

- kinetic energy
- potential energy
- thermal energy
- chemical energy
- nuclear energy
- they can all transform from one to another
- but the grand total does not change

Conservation of Energy

Conservation of Energy

chemical energy in the body \Rightarrow potential energy of the train

Special Relativity

- light speed is the speed limit
- the faster you move, time goes more slowly, things look shorter, and you feel heavier
- $c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is a natural constant, the same no matter how you move
- we can measure distance with time
- Im=3.3nsec
- light year $\approx 10^{16} \mathrm{~m}$

$E=m c^{2}$

"It followed from the special theory of relativity that mass and energy are both but different manifestations of the same thing -- a somewhat unfamiliar conception for the average mind. Furthermore, the equation E is equal to m c-squared, in which energy is put equal to mass, multiplied by the square of the velocity of light, showed that very small amounts of mass may be converted into a very large amount of energy and vice versa. The mass and energy were in fact equivalent, according to the formula mentioned before. This was
demonstrated by Cockcroft and Walton in 1932, experimentally."

$E=m c^{2}$

"It followed from the special theory of relativity that mass and energy are both but different manifestations of the same thing -- a somewhat unfamiliar conception for the average mind. Furthermore, the equation E is equal to m c-squared, in which energy is put equal to mass, multiplied by the square of the velocity of light, showed that very small amounts of mass may be converted into a very large amount of energy and vice versa. The mass and energy were in fact equivalent, according to the formula mentioned before. This was
demonstrated by Cockcroft and Walton in 1932, experimentally."

First Accelerator

- Cockroft and Walton split the atoms for the first time (1932) $p+{ }^{7} \mathrm{Li} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$ Modern alchemy!
- p weighs 1.0078 u
- ${ }^{7} \mathrm{Li}$ weighs 7.0160 u
- ${ }^{4} \mathrm{He}$ weighs 4.0026 u
$1.0078 \mathrm{u}+7.0160 \mathrm{u}$
$-2 \times 4.0026 u=0.0186 u$
- two helium atoms flew apart with lots of kinetic energy
- mass turns into energy!

1951 Nobel Prize in Physics

Berkeley

Berkeley

Berkeley

Final proof

- trillions of neutrinos go through our body every second

Final proof

- trillions of neutrinos go through our body every second

Final proof

- trillions of neutrinos go through our body every second

taken 1000 m underground in pitch darkness

taken 1000 m underground in pitch darkness

THE INVISIBLES

Quantum Mechanics

- particle is wave, wave is particle
- Heisenberg uncertainty principle: $\Delta x \Delta p \geq \hbar / 2$
- $\hbar=6.63 \times 10^{-34} \mathrm{~J}$ is a natural constant
- $\hbar c=0.197 \mathrm{GeV} \mathrm{fm}$ is a useful combination
- can measure distance with energy
- Ifm=10-13 $\mathrm{cm}=5.0 \mathrm{GeV}^{-1}$

Copenhagen

 interpretation- In quantum mechanics, one can only talk about probability
- We cannot predict with certainty what should happen
- Only after repeating the same experiment many times, we can test the prediction
- Einstein: God doesn't play dice.
- Apparently He does.

electron is a wave

Akira Tonomura

electron is a wave

Akira Tonomura

spin and statistics

- particles spin eternally like a top
- spin angular momentum $s=($ half-integer $) \times \hbar$
- $s=1 / 2$ for electrons, follows Fermi statistics (exclusion principle)
- $s=\mid$ for photons, follows Bose statistics
- Quantum Field Theory predicts that all particles with integer spins are bosons, those with half-odd spins are fermions

Lifetime

- Most particles have a finite lifetime, decay into other ligher particles
- I/T is the probability of decay in unit time
- $\mathrm{d} n / \mathrm{d} t=-n / \mathrm{T}$
- $n(t)=n(0) \mathrm{e}^{-t / \tau}$
- time-energy uncertainty principle $\Delta E \Delta t \approx \hbar$
- $\Gamma=\hbar / T$ is the width of energy (mass)
- stronger the force, \int_{0}^{∞} shorter the lifetime

$d t e^{-2 t / \tau} e^{-i\left(\omega-\omega_{0}\right) t}=\frac{i \tau / 2}{i+\tau\left(\omega-\omega_{0}\right) / 2}$

Lifet

- Most particles have a finite lifetime, decay into other ligher particles
- I/T is the probability of decay in unit time
- $\mathrm{d} n / \mathrm{d} t=-n / \mathrm{T}$
- $n(t)=n(0) \mathrm{e}^{-t / \mathrm{T}}$
- time-energy uncertainty principle $\Delta E \Delta t \approx \hbar$
- $\Gamma=\hbar / T$ is the width of
 energy (mass)
- stronger the force, \int_{0}^{∞}

$$
\begin{aligned}
& \int_{0}^{\infty} d t e^{-2 t / \tau} e^{-i\left(\omega-\omega_{0}\right) t}=\frac{i \tau / 2}{i+\tau\left(\omega-\omega_{0}\right) / 2} \\
& \left|\frac{i \tau / 2}{i+\tau\left(\omega-\omega_{0}\right) / 2}\right|^{2}=\frac{1}{\left(E-E_{0}\right)^{2}+\Gamma^{2} / 4}
\end{aligned}
$$

conservation of

matter particle number

- As far as we know, particle number is conserved
- particle number = \#matter - \#anti-matter
- photon \rightarrow electron+positron: $\gamma \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}$
- neutron \rightarrow proton+electron+anti-neutrino $n \rightarrow p e^{-} \overline{\mathrm{V}}_{\mathrm{e}}$
- nuclear reaction in the Sun $p p \rightarrow d e^{+} V_{e}$ (d=[pn])
- Many believe it should be violated, so that we could survive the Big Bang!

Standard Model 2

CERN Summer Student Programme July 2I， 2009

Hitoshi Murayama（IPMU Tokyo \＆Berkeley）

- Another important prediction of Quantum Field Theory
- Doing all three operations should leave physics unchanged:
- charge conjugation C
- parity P
- time reversal T
- predicts that particle and anti-particle have
- same mass
- same lifetime
- weak force violates all C, T, P, but not CPT

parity: P

- space inversion $x \rightarrow-x, p \rightarrow-p, J \rightarrow+J, t \rightarrow+t$,

$$
E \rightarrow-E, B \rightarrow+B
$$

- inverts force: $F \rightarrow-F$
- mirror=same law of physics
- $F=m a \rightarrow-F=m(-a)$
- quantum state: $\Psi \rightarrow \pm \Psi$
- classify even and odd states
- photon (electric field) is odd
- matter particles are even
- anti-matter particles are odd

charge conjugation: C

- particles and anti-particles are mirrors
- both of them fall the same way
- interchange particles and anti-particles, and flip the sign of E \& B fields: nothing changes with electromagnetism
- photon is odd under C
- It looks like the distinction between matter and anti-matter is just a convention

charge conjugation: C

- particles and anti-particles are mirrors both of them fall the same way
- interchange particles and anti-particles, and flip the sign of E \& B fields: nothing changes with electromagnetism
- photon is odd under C
- It looks like the distinction between matter and anti-matter is just a convention

charge conjugation: C

- particles and anti-particles are mirrors both of them fall the same way
- interchange particles and anti-particles, and flip the sign of E \& B fields: nothing changes with electromagnetism
- photon is odd under C
- It looks like the distinction between matter and anti-matter is just a convention

time reversal: T

- can't reverse time, but we can discuss if we can reverse the motion exactly
- basically play the video backwards
- $t \rightarrow-t, p \rightarrow-p, J \rightarrow-J, x \rightarrow+x, F \rightarrow+F$
- $F=m a \rightarrow F=m a$
- It is an anti-unitarity transformation in quantum mechanics

possible in principle

possible in principle

scattering experiments

- How do we probe microscopic world we can't see even with the best microscope?
- Uncertainty principle: $\Delta x \Delta p \geq \hbar / 2$
- If we shoot a particle with a big momentum, and if gets bounced, Δp is big, and we can see small distances Δx

cross section

- scattering experiment
- You can't control your projectile precisely enough to make sure it hits the target
- probability is
(size of the target) / (size of the beam)
- (size of the target) is called cross section

Early Universe and elementary particle

- Early Universe: high temperature T
- high energy: E=kT
- large momentum: $p=E / c=k T / c$
- small distance: $x=\hbar / p=\hbar c / k T$
- elementary particles or physics at short distances are very important in the early Universe!

History of the Universe

Quantum Electro Dynamics (QED)

Maxwell

- electricity and magnetism unified
- predicts electromagnetic wave=light
- it is photon in QED
- all electromagnetic phenomena are described in term of exchange of photons

Rutherford experiment

- bombard gold foil with alphas
- When I fired a bullet at a

Kleenex tissue, the bullet came back!

- shows electric charge is
concentrated at the center of
a gold atom
- but when alpha gets too close, it shows deviation from theory
- nucleus $\sim 10^{-12} \mathrm{~cm}$

Rutherford experiment

- bombard gold foil with alphas
- When I fired a bullet at a Kleenex tissue, the bullet came back!
- shows electric charge is concentrated at the center of a gold atom
- but when alpha gets too close, it shows deviation from theory
- nucleus $\sim 10^{-12} \mathrm{~cm}$

Rutherford experiment

- bombard gold foil with alphas
- When I fired a bullet at a Kleenex tissue, the bullet came back!
- shows electric charge is concentrated at the center of a gold atom
- but when alpha gets too close, it shows deviation from theory
- nucleus $\sim 10^{-12} \mathrm{~cm}$

Rutherford scattering

- Classically, you solve the equation of motion of the alpha particle for a fixed p, with varying impact parameter b
- The differential cross section is $\frac{d \sigma}{d \cos \theta} \propto \frac{1}{\sin ^{4} \theta / 2}$

Virtual photon

- Coulomb potential around a charged particle is a cloud of virtual photons
- the charge is emitting a virtual photon all the time, costing the energy of $\Delta E=c p$
- the smaller the momentum, it costs less energy and can survive longer $\Delta t \approx \hbar / c p$, and can go further $\Delta x \approx c \Delta t \approx \hbar / p$, basically one wavelength away from the source

Quantum Description

- The nucleus is emitting a virtual photon all the time
- One with large λ (small $q=h / \lambda$) does not cost much ΔE and goes far
- One with small λ (large $q=h / \lambda$) costs much ΔE and does not go far
- photon momentum kicks the alpha

$$
\begin{aligned}
q^{2} & =-\vec{q}^{2}=-\left|\vec{p}-\vec{p}^{\prime}\right|^{2} \\
& =-2|\vec{p}|^{2}(1-\cos \theta)
\end{aligned}
$$

- photon propagator goes as $I / q^{2} \propto I /(I-\cos \theta)$
- The cross section goes as $I /(I-\cos \theta)^{2}=I / \sin ^{4}(\theta / 2)$!

Feynman diagram

- exchange virtual particles for scattering
- anti-particles are particles going backward in time
- all you need to know about the electromagnetism is this vertex costing e
- diagrams with more vertices: higher order in $\alpha=e^{2 / 4} \pi=1 / / 37$
e^{-}

Useful formula

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$
- cross section is

$$
\sigma=\frac{4 \pi \alpha^{2}}{3 s}=\frac{86.8 \mathrm{fb}}{s / \mathrm{TeV}^{2}}
$$

electron magnetic

moment

- $g=2$ is the prediction by Dirac
- in QED, there are higher order corrections
- $O(\alpha)$: I diagram
- $O\left(\alpha^{2}\right): 7$ diagrams
- $O\left(\alpha^{3}\right): 72$ diagrams
- $O\left(\alpha^{4}\right): 891$ diagrams

8th order $O\left(\alpha^{4}\right)$

- 891 diagrams computed numerically using a supercomputer

The answer

$$
\begin{aligned}
\frac{1}{2} g= & 1+A_{2} \frac{\alpha}{\pi}+A_{4}\left(\frac{\alpha}{\pi}\right)^{2}+A_{6}\left(\frac{\alpha}{\pi}\right)^{3}+A_{8}\left(\frac{\alpha}{\pi}\right)^{4}+\cdots \\
A_{2}= & \frac{1}{2} \\
A_{4}= & \frac{197}{144}+\left(\frac{1}{2}-3 \ln 2\right) \zeta(2)+\frac{3}{4} \zeta(3)=-0.328478965579 \\
A_{6}= & \frac{83}{72} \pi^{2} \zeta(3)-\frac{215}{24} \zeta(5)-\frac{239}{2160} \pi^{4}+\frac{139}{18} \zeta(3)-\frac{298}{9} \pi^{2} \ln 2 \\
& +\frac{17101}{810} \pi^{2}+\frac{28259}{5184}+\frac{100}{3}\left[\left(\operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{1}{24} \ln ^{4} 2\right)-\frac{1}{24} \pi^{2} \ln ^{2} 2\right] \\
= & 1.181241456587 \ldots \\
A_{8}= & -1.9144(35)
\end{aligned}
$$

The data

The data

- 2008 measurement by Harvard group

The data

- 2008 measurement by Harvard group
- $g_{e} / 2=1.001$ I59 652 I 80.73 (0.28) [0.24ppb]

The data

- 2008 measurement by Harvard group
- $g_{e} / 2=1.00 \mid 159652$ | 80.73 (0.28)
[0.24ppb]
- the theoretical value is $g_{e} / 2=1.001$ I 59652 I $82.79(0.10)(0.3$ I) (7.7I)

The data

- 2008 measurement by Harvard group
- $g_{e} / 2=1.00 \mid 159652$ | 80.73 (0.28)
[0.24ppb]
- the theoretical value is
$g_{e} / 2=1.001$ I59 652 I 82.79 (0.10)(0.3 I)
(7.7I)
- The biggest error is that we don't know α well enough

comparison

PHYSICAL REVIEW A 74, 052109 (2006)

FIG. 18. Comparison of our measurement $[h / m(\mathrm{Rb})]$ with the measurements used for the 2002 CODATA adjustment [1] and the measurement of Ref. [5] (Harvard).

hot topic: muon g-2

- muon is basically the same as electron, but heavier
- important contribution from hadrons
- Calculated based on data in e+e- colliders

arXiv:0906.5443

Strong Interaction Quantum
 ChromoDynamics

Baryon Number

- In I932 Anderson discovered positron using cloud chamber exposed to cosmic rays
- Why don't we see $p \rightarrow e^{+}+\gamma$?
- Stückelberg made up a new conservation law: \#baryon=\#p+\#n
- "baryon" means heavy, at that stage p and n
- "lepton" means light, at that stage e^{+}and e^{-}

Now, best limit is $\mathrm{T}\left(p \rightarrow \mathrm{e}^{+}+\pi^{0}\right)>8.2 \times 10^{33}$ years (SuperK)

Basic properties of nuclei

- Z protons and $(A-Z)$ neutrons
- $B \approx 16 \mathrm{MeV} \times \mathrm{A}$
- $R \approx 1.12 \mathrm{fm} \times A^{1 / 3}$
- cf. Coulomb energy $\approx 0.7 \mathrm{MeV} \times Z^{2} / A^{1 / 3}$
- something is keeping the nuclei from falling apart due to Coulomb repulsion among p's
- Ifm is the range of the force, not much beyond the size of nucleons. Basically nucleons shoulder-to-shoulder

Yukawa theory

- assume the force carrier particle has a finite mass m
- It costs a minimum energy $\Delta E>m c^{2}$ to emit the virtual massive particle
- We need to give it back within $\Delta t \approx \hbar / \Delta E$
- It cannot go beyond $c \Delta t \approx \hbar c / \Delta E<\hbar c / m c^{2}$
- the range of the force is then $\hbar / m c$
- assuming this is 2 fm , we need $m \approx 100 \mathrm{MeV} / \mathrm{c}^{2}$
- the mass is somewhere between "lepton" (electron) and "baryon" (nucleon) and was called "meson"

Yukawa theory

- assume the force carrier particle has a finite mass m
- It costs a minimum energy $\Delta E>m c^{2}$ to emit the virtual massive particle
- We need to give it back within $\Delta t \approx \hbar / \Delta E$
- It cannot go beyond $c \Delta t \approx \hbar c / \Delta E<\hbar c / m c^{2}$
- the range of the force is then $\hbar / m c$
- assuming this is 2 fm , we need $m \approx 100 \mathrm{MeV} / \mathrm{c}^{2}$
- the mass is somewhere between "lepton" (electron) and "baryon" (nucleon) and was called "meson"

Yukawa theory

- assume the force carrier particle has a finite mass m
- It costs a minimum energy $\Delta E>m c^{2}$ to emit the virtual massive particle
- We need to give it back within $\Delta t \approx \hbar / \Delta E$
- It cannot go beyond $c \Delta t \approx \hbar c / \Delta E<\hbar c / m c^{2}$
- the range of the force is then $\hbar / m c$
- assuming this is 2 fm , we need $m \approx 100 \mathrm{MeV} / \mathrm{c}^{2}$
- the mass is somewhere between "lepton" (electron) and "baryon" (nucleon) and was called "meson"

Yukawa theory

- assume the force carrier particle has a finite mass m
- It costs a minimum energy $\Delta E>m c^{2}$ to emit the virtual massive particle
- We need to give it back within $\Delta t \approx \hbar / \Delta E$
- It cannot go beyond $c \Delta t \approx \hbar c / \Delta E<\hbar c / m c^{2}$
- the range of the force is then $\hbar / m c$
- assuming this is 2 fm , we need $m \approx 100 \mathrm{MeV} / \mathrm{c}^{2}$
- the mass is somewhere between "lepton" (electron) and "baryon" (nucleon) and was called "meson"

The Andes

- It was confusing when muon was discovered at the mass range, but does not do strong interaction
- Maybe there is one more?
- look for more mesons on top of the Andes
- there was!
- cosmic rays interact at $15-20 \mathrm{~km}$ alititude
- $\mathrm{p}^{+} \mathrm{A} \rightarrow \pi^{+}+\mathrm{X}, \pi^{+} \rightarrow \mu^{+} \mathrm{X}$
- $T\left(\pi^{+}\right)=0.026 \mu \mathrm{sec}$
- $\mathrm{T}\left(\mu^{+}\right)=2.2 \mu \mathrm{sec}$
- then muons reach the surface thanks to time dilation
- but on high mountains pions are still "alive"

The Andes

- It was confusing when muon was discovered at the mass range, but does not do strong interaction
- Maybe there is one more?
- look for more mesons on top of the Andes
- there was!
- cosmic rays interact at $15-20 \mathrm{~km}$ alititude
- $\mathrm{p}^{+} \mathrm{A} \rightarrow \pi^{+}+\mathrm{X}, \pi^{+} \rightarrow \mu^{+} \mathrm{X}$
- $T\left(\pi^{+}\right)=0.026 \mu \mathrm{sec}$
- $\mathrm{T}\left(\mu^{+}\right)=2.2 \mu \mathrm{sec}$
- then muons reach the surface thanks to time dilation
- but on high mountains pions are still "alive"

$$
\begin{gathered}
c T\left(\mu^{+}\right)=660 \mathrm{~m} \ll 10 \mathrm{~km}! \\
c T\left(\pi^{+}\right)=7.8 \mathrm{~m} \\
\gamma \beta>1000 \\
E\left(\pi^{+}\right)=\gamma m\left(\pi^{+}\right)>100 \mathrm{GeV}!
\end{gathered}
$$

hadrons

- But this was just the beginning
- soon many many particles discovered that participate in the strong interaction
- baryons and mesons
- A big mess!
- collectively called hadrons (thick particles)

hadrons

- But this was just the beginning
- soon many many particles discovered that participate in the strong interaction
- baryons and mesons
- A big mess!
- collectively called hadrons (thick particles)

resonance

πp scattering

- πp scattering expt
- cross section goes very big at a particular energy
- resonance: new particle $\pi p \rightarrow \Delta \rightarrow \pi p$
- the width of the resonance ΔE is \hbar / T
- VERY short-lived $\mathrm{T} \sim 10^{-23} \mathrm{sec}$!

resonance

πp scattering

- πp scattering expt
- cross section goes very big at a particular energy
- resonance: new particle $\pi p \rightarrow \Delta \rightarrow \pi p$
- the width of the resonance ΔE is \hbar / T
- VERY short-lived $\mathrm{T} \sim 10^{-23} \mathrm{sec}$!

V-particles

- produced in pairs K^{+}or Σ^{+}
- somehow "long-lived" T~10-10 sec
- Nishijima, Gell-Mann
- produced in pairs by strong interaction because they carry a new quantum number + I and -I
- hence can't decay by strong interaction

- "strangeness"

Standard Model 3

CERN Summer Student Programme

 July 22， 2009
Hitoshi Murayama（IPMU Tokyo \＆Berkeley）

hadrons

- But this was just the beginning
- soon many many particles discovered that participate in the strong interaction
- baryons and mesons
- A big mess!
- collectively called hadrons (thick particles)

hadrons

- But this was just the beginning
- soon many many particles discovered that participate in the strong interaction
- baryons and mesons
- A big mess!
- collectively called hadrons (thick particles)

hadrons

- But this was just the beginning
- soon many many particles discovered that participate in the strong interaction
- baryons and mesons
- A big mess!
- collectively called hadrons (thick particles)

fundamental constitutents? like 100 atmos with e, p, n

Deep Inelastic Scattering (DIS)

Deep Inelastic

 Scattering (DIS)

 Scattering (DIS)}

- e p scattering
- scoffed at because electron does not do strong interaction
- turned out brilliant
because of well-defined
roles
e=probe
p=probed
- found partons inside proton, quarks?
- 1990 Nobel Prize:

Friedman, Kendall, Taylor

Murray Gell-Mann 1969 Nobel

Deep Inelastic

Scattering (DIS)

- e p scattering
- scoffed at because electron does not do strong interaction
- turned out brilliant
because of well-defined
roles
e=probe
p=probed
- found partons inside proton, quarks?
- 1990 Nobel Prize:

Friedman, Kendall, Taylor

Murray Gell-Mann 1969 Nobel

Deep Inelastic

Scattering (DIS)

- e p scattering
- scoffed at because electron does not do strong interaction
- turned out brilliant because of well-defined roles
e=probe
p=probed
- found partons inside proton, quarks?
- 1990 Nobel Prize:

Friedman, Kendall, Taylor

Murray Gell-Mann 1969 Nobel

Deep Inelastic

Scattering (DIS)

- e p scattering
- scoffed at because electron does not do strong interaction
- turned out brilliant because of well-defined roles
e=probe
p=probed
- found partons inside proton, quarks?
- 1990 Nobel Prize:

Friedman, Kendall, Taylor

Murray Gell-Mann 1969 Nobel

puzzles about quarks

- We need
- up $u(+2 / 3$ e)
- down d(-I/3 e)
- strange $s(-\mathrm{I} / 3 \mathrm{e})$
- proton is (uud)
- neutron is n (udd)
- pion is $\pi^{+}(u \bar{d})$
- kaon is $K^{+}(u \bar{s})$
- baryons have three quarks
- mesons have a quark and an anti-quark
- but quarks have not been seen
- must be confined
- and fractionally charged
- do they really exist?

puzzles about quarks

- We need
- up $u(+2 / 3$ e)
- down d(-I/3 e)
- strange $s(-\mathrm{I} / 3 \mathrm{e})$
- proton is (uud)
- neutron is $n(u d d)$
- pion is $\pi^{+}(u \bar{d})$
- kaon is $K^{+}(u \bar{s})$
- quarks must have $s=1 / 2$
- therefore fermions
- obey exclusion principle
- but there is Δ^{++}(uuu)
- three up-quarks in the same state?
- introduce color
- $\Delta^{++}(u u u)$
- sounds ad hoc

puzzles about quarks

- We need
- up $u(+2 / 3$ e)
- down d(-I/3 e)
- strange $s(-1 / 3 e)$
- proton is (uud)
- neutron is $n(u d d)$
- pion is $\pi^{+}(u \bar{d})$
- kaon is $K^{+}(u \bar{s})$
- confined
- but they were seen in DIS experiments
- they behave as if they are free
- why do they appear free when struck at high energies?

November revolution

- Brookhaven: proton on a target, look for $\mathrm{e}^{+} \mathrm{e}^{-}$pairs
- SLAC: $\mathrm{e}^{+} \mathrm{e}^{-}$collider, look for hadrons

Experimental Observation of a Heavy Particle $J \dagger$

J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, and Sau Lan Wi Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology Cambridre Massachusetts 02139
and

Y. Y. Lee

Brookhaven National Laboratory, Upton, New York 11973 (Received 12 November 1974)

We report the observation of a heavy particle J, with mass $m=3.1 \mathrm{GeV}$ and width approximately zero. The observation was made from the reaction $p+\mathrm{Be} \rightarrow e^{+}+e^{-}+x$ by measuring the $e^{+} e^{-}$mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's $30-\mathrm{GeV}$ alternating-gradient synchrotron.

This experiment is part of a large program to study the behavior of timelike photons in $p+p \rightarrow e^{+}$ $+e^{-}+x$ reactions ${ }^{1}$ and to search for new particles which decay into $e^{+} e^{-}$and $\mu^{+} \mu^{-}$pairs.
We use a slow extracted beam from the Brookhaven National Laboratory's alternating-gradient synchrotron. The beam intensity varies from 10^{10} to $2 \times 10^{12} \mathrm{p}$ /pulse. The beam is guided onto an extended target, normally nine pieces of 70 mil Be , to enable us to reject the pair accidentals by requiring the two tracks to come from the same origin. The beam intensity is monitored with a secondary emission counter, calibrated
daily with a thin Al foil. The beam spot s $3 \times 6 \mathrm{~mm}^{2}$, and is monitored with closed-c television. Figure 1(a) shows the simplifi view of one arm of the spectrometer. The arms are placed at 14.6° with respect to tl dent beam; bending (by M1, M2) is done vo ly to decouple the angle (θ) and the momen of the particle.
The Cherenkov counter C_{0} is filled with mosphere and C_{e} with 0.8 atmosphere of H counters C_{0} and C_{e} are decoupled by magn and M2. This enables us to reject knock-c trons from C_{0}. Extensive and repeated ca.

FIG. 1. (a) Simplified side view of one the spectrometer arms. (b) Time-of-flight spectrum of $e^{+} e^{-}$pa of those events with $3.0<m<3.2 \mathrm{GeV}$. (c) Pulse-height spectrum of e^{-}(same for e^{+}) of the $e^{+} e^{-}$pair.
tion of all the counters is done with approximately $6-\mathrm{GeV}$ electrons produced with a lead converter target. There are eleven planes ($2 \times A_{0}, 3 \times A$, $3 \times B, 3 \times C$) of proportional chambers rotated approximately 20° with respect to each other to reduce multitrack confusion. To further reduce the problem of operating the chambers at high rate, eight vertical and eight horizontal hodoscope counters are placed behind chambers A and B. Behind the largest chamber $C(1 \mathrm{~m} \times 1 \mathrm{~m})$ there are two banks of 25 lead glass counters of 3 ra diation lengths each, followed by one bank of lead-Lucite counters to further reject hadrons from electrons and to improve track identification. During the experiment all the counters are monitored with a PDP 11-45 computer and all high voltages are checked every 30 min .
The magnets were measured with a three-dimensional Hall probe. A total of 10^{5} points were mapped at various current settings. The acceptance of the spectrometer is $\Delta \theta= \pm 1^{\circ}, \Delta \varphi= \pm 2^{\circ}$, $\Delta m=2 \mathrm{GeV}$. Thus the spectrometer enables us to map the $e^{+} e^{-}$mass region from 1 to 5 GeV in hree overlapping settings.
Figure 1(b) shows the time-of-flight spectrum between the e^{+}and e^{-}arms in the mass region $2.5<m<3.5 \mathrm{GeV}$. A clear peak of $1.5-\mathrm{nsec}$ width is observed. This enables us to reject the accidentals easily. Track reconstruction between the two arms was made and again we have a clearcut distinction between real pairs and accidentals. Figure 1(c) shows the shower and lead-glass pulse height spectrum for the events in the mass region $3.0<m<3.2 \mathrm{GeV}$. They are again in agree ment with the calibration made by the e beam
Typical data are shown in Fig. 2. There is a clear sharp enhancement at $m=3.1 \mathrm{GeV}$. Without folding in the 10^{5} mapped magnetic points and the radiative corrections, we estimate a mass resolution of 20 MeV . As seen from Fig. 2 the width of the particle is consistent with zero.
To ensure that the observed peak is indeed a real particle ($J \rightarrow e^{+} e^{-}$) many experimental checks were made. We list seven examples
(1) When we decreased the magnet currents by 10%, the peak remained fixed at 3.1 GeV (see Fig. 2).
(2) To check second-order effects on the target we increased the target thickness by a factor of 2. The yield increased by a factor of 2 , not by 4 .
(3) To check the pileup in the lead glass and shower counters, different runs with different voltage settings on the counters were made. No effect was observed on the yield of J.

FIG. 2. Mass spectrum showing the existence of J Results from two spectrometer settings are plotted showing that the peak is independent of spectrometer currents. The run at reduced current was taken two months later than the normal run.
(4) To ensure that the peak is not due to scattering from the sides of magnets, cuts were made in the data to reduce the effective aperture. No significant reduction in the J yield was found.
(5) To check the read-out system of the chambers and the triggering system of the hodoscopes, runs were made with a few planes of chambers deleted and with sections of the hodoscopes omitted from the trigger. No effect was observed on the J yield.
(6) Runs with different beam intensity were made and the yield did not change.
(7) To avoid systematic errors, half of the dat were taken at each spectrometer polarity
These and many other checks convinced us that we have observed a real massive particle $J \rightarrow e e$
If we assume a production mechanism for J to be $d \sigma / d p_{\perp} \propto \exp \left(-6 p_{\perp}\right)$ we obtain a yield of J of ap-

Experimental Observation of a Heavy Particle $J \dagger$

J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen, G. Everhart, P. Goldhagen, J. Leong, T. McCorriston, T. G. Rhoades, M. Rohde, Samuel C. C. Ting, and Sau Lan Wt Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology Cambridre Massachusetts 02139
and

Y. Y. Lee

Brookhaven National Laboratory, Upton, New York 11973 (Received 12 November 1974)

We report the observation of a heavy particle J, with mass $m=3.1 \mathrm{GeV}$ and width approximately zero. The observation was made from the reaction $p+\mathrm{Be} \rightarrow e^{+}+e^{-}+x$ by measuring the $e^{+} e^{-}$mass spectrum with a precise pair spectrometer at the Brookhaven National Laboratory's $30-\mathrm{GeV}$ alternating-gradient synchrotron.

This experiment is part of a large program to study the behavior of timelike photons in $p+p \rightarrow e^{+}$ $+e^{-}+x$ reactions ${ }^{1}$ and to search for new particles which decay into $e^{+} e^{-}$and $\mu^{+} \mu^{-}$pairs.
We use a slow extracted beam from the Brookhaven National Laboratory's alternating-gradient synchrotron. The beam intensity varies from 10^{10} to $2 \times 10^{12} \mathrm{p}$ /pulse. The beam is guided onto an extended target, normally nine pieces of 70 mil Be , to enable us to reject the pair accidentals by requiring the two tracks to come from the same origin. The beam intensity is monitored with a secondary emission counter, calibrated
daily with a thin Al foil. The beam spot s $3 \times 6 \mathrm{~mm}^{2}$, and is monitored with closed-c television. Figure 1(a) shows the simplifi view of one arm of the spectrometer. The arms are placed at 14.6° with respect to tl dent beam; bending (by M1, M2) is done vo ly to decouple the angle (θ) and the momen of the particle
The Cherenkov counter C_{0} is filled with mosphere and C_{e} with 0.8 atmosphere of H counters C_{0} and C_{e} are decoupled by magn and $M 2$. This enables us to reject knock-c trons from C_{0}. Extensive and repeated ca.

FIG. 1. (a) Simplified side view of one of the spectrometer arms. (b) Time-of-flight spectrum of $e^{+} e^{-}$pa of those events with $3.0<m<3.2 \mathrm{GeV}$. (c) Pulse-height spectrum of e^{-}(same for e^{+}) of the $e^{+} e^{-}$pair.
tion of all the counters is done with approximately $6-\mathrm{GeV}$ electrons produced with a lead converter target. There are eleven planes ($2 \times A_{0}, 3 \times A$, $3 \times B, 3 \times C$) of proportional chambers rotated approximately 20° with respect to each other to reduce multitrack confusion. To further reduce the problem of operating the chambers at high rate, eight vertical and eight horizontal hodoscope counters are placed behind chambers A and B. Behind the largest chamber $C(1 \mathrm{~m} \times 1 \mathrm{~m})$ there are two banks of 25 lead glass counters of $3 \mathrm{ra}-$ diation lengths each, followed by one bank of lead-Lucite counters to further reject hadrons from electrons and to improve track identification. During the experiment all the counters are monitored with a PDP 11-45 computer and all high voltages are checked every 30 min .
The magnets were measured with a three-dimensional Hall probe. A total of 10^{5} points were mapped at various current settings. The acceptance of the spectrometer is $\Delta \theta= \pm 1^{\circ}, \Delta \varphi= \pm 2^{\circ}$, $\Delta m=2 \mathrm{GeV}$. Thus the spectrometer enables us to map the $e^{+} e^{-}$mass region from 1 to 5 GeV in three overlapping settings.
Figure 1(b) shows the time-of-flight spectrum between the e^{+}and e^{-}arms in the mass region $2.5<m<3.5 \mathrm{GeV}$. A clear peak of $1.5-\mathrm{nsec}$ width is observed. This enables us to reject the accidentals easily. Track reconstruction between the two arms was made and again we have a clearcut distinction between real pairs and accidentals. Figure 1(c) shows the shower and lead-glass pulse height spectrum for the events in the mass region $3.0<m<3.2 \mathrm{GeV}$. They are again in agree ment with the calibration made by the e beam.
Typical data are shown in Fig. 2. There is a clear sharp enhancement at $m=3.1 \mathrm{GeV}$. Without

FIG. 2. Mass spectrum showing the existence of J. Results from two spectrometer settings are plotted showing that the peak is independent of spectrometer currents. The run at reduced current was taken two months later than the normal run.
(4) To ensure that the peak is not due to scatter ig from the sides of magnets, cuts were made a the data to reduce the effective aperture. No gnificant reduction in the J yield was found
(5) To check the read-out system of the chamers and the triggering system of the hodoscopes, uns were made with a few planes of chambers eleted and with sections of the hodoscopes omitd from the trigger. No effect was observed on e J yield.
(6) Runs with different beam intensity were ade and the yield did not change.
(7) To avoid systematic errors, half of the data ere taken at each spectrometer polarity
These and many other checks convinced us that e have observed a real massive particle $J \rightarrow e e$. If we assume a production mechanism for J to ve $d \sigma / d p_{\perp} \propto \exp \left(-6 p_{\perp}\right)$ we obtain a yield of J of ap-
proximately $10^{-34} \mathrm{~cm}^{2}$.
The most striking feature of J is the possibility that it may be one of the theoretically suggested charmed particles ${ }^{2}$ or $a^{\prime} s^{3}$ or $Z_{0}{ }^{\prime} s^{4}{ }^{4}$ etc. In order to study the real nature of $J,{ }^{5}$ measurements are now underway on the various decay modes, e.g., an $e \pi \nu$ mode would imply that J is weakly interacting in nature.
It is also important to note the absence of an $e^{+} e^{-}$continuum, which contradicts the predictions of parton models. ${ }^{6}$
We wish to thank Dr. R. R. Rau and the alternat ing-gradient synchrotron staff who have done an outstanding job in setting up and maintaining this experiment. We thank especially Dr. F. Eppling, B. M. Bailey, and the staff of the Laboratory for Nuclear Science for their help and encouragement. We thank also Ms. I. Schulz, Ms. H. Feind N. Feind, D. Osborne, G. Krey, J. Donahue, and
E. D. Weiner for help and assistance. We thank also M. Deutsch, V. F. Weisskopf, T. T. Wu, S. Drell, and S. Glashow for many interesting conversations.
\uparrow Accepted without review under policy announced in Editorial of 20 July 1964 [Phys. Rev. Lett. 13, 79 (1964)].

The first work on $p+p \rightarrow \mu^{+}+\mu^{-}+x$ was done by L . Lederman et al., Phys. Rev. Lett. 25, 1523 (1970).
S. L. Glashow, private communication.
${ }^{3}$ T. D. Lee, Phys. Rev. Lett. 26, 801 (1971)
${ }^{4}$ S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967), and 27, 1688 (1971), and Phys. Rev. D $\underline{5}, 1412,1962$ (197؛ ${ }^{5}$ After completion of this paper, we learned of a sim ilar result from SPEAR. B. Richter and W. Panofsky: private communication; Jo-E. Augustin et al., followi Letter [Phys. Rev. Lett. 33, 1404 (1974)].
${ }^{6}$ S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 31 t (1970). An improved version of the theory is not in ec tradiction with the data.

Discovery of a Narrow Resonance in $e^{+} e^{-}$Annihilation*

J.-E. Augustin, \dagger A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin, G. J. Feldman, G. E. Fischer, D. Fryberger, G. Hanson, B. Jean-Marie, \dagger R. R. Larsen, V. Lüth, H. L. Lynch, D. Lyon, C. C. Morehouse, J. M. Paterson, M. L. Perl, B. Richter, P. Rapidis, R. F. Schwitters, W. M. Tanenbaum, and F. Vannucci \ddagger
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

and

G. S. Abrams, D. Briggs, W. Chinowsky, C. E. Friedberg, G. Goldhaber, R. J. Hollebeek,
J. A. Kadyk, B. Lulu, F. Pierre, \& G. H. Trilling, J. S. Whitaker,
J. Wiss, and J. E. Zipse

Lawrence Berkeley Laboratory and Department of Physics, University of California, Berkeley, California 94720 (Received 13 November 1974)

We have observed a very sharp peak in the cross section for $e^{+} e^{-} \rightarrow$ hadrons, $e^{+} e^{-}$, and possibly $\mu^{+} \mu^{-}$at a center-of-mass energy of $3.105 \pm 0.003 \mathrm{GeV}$. The upper limit to the full width at half-maximum is 1.3 MeV .

We have observed a very sharp peak in the cross section for $e^{+} e^{-} \rightarrow$ hadrons, $e^{+} e^{-}$, and possibly $\mu^{+} \mu^{-}$in the Stanford Linear Accelerator Center (SLAC)-Lawrence Berkeley Laboratory magnetic detector ${ }^{1}$ at the SLAC electron-positron storage ring SPEAR. The resonance has the parameters
$E=3.105 \pm 0.003 \mathrm{GeV}$,
$\Gamma \leqslant 1.3 \mathrm{MeV}$
(full width at half-maximum), where the uncertainty in the energy of the resonance reflects the
uncertainty in the absolute energy calibration o the storage ring. [We suggest naming this struc ture $\psi(3105)$.] The cross section for hadron pro duction at the peak of the resonance is $\geqslant 2300$ nb , an enhancement of about 100 times the cross section outside the resonance. The large mass, large cross section, and narrow width of this structure are entirely unexpected.
Our attention was first drawn to the possibility of structure in the $e^{+} e^{-} \rightarrow$ hadron cross section during a scan of the cross section carried out in $200-\mathrm{MeV}$ steps. A 30% (6 nb) enhancement was
observed at a c.m. energy of 3.2 GeV . Subsequently, we repeated the measurement at 3.2 GeV and also made measurements at 3.1 and 3.3 GeV . The $3.2-\mathrm{GeV}$ results reproduced, the 3.3GeV measurement showed no enhancement, but the $3.1-\mathrm{GeV}$ measurements were internally in consistent-six out of eight runs giving a low cross section and two runs giving a factor of 3 to 5 higher cross section. This pattern could have been caused by a very narrow resonance at an energy slightly larger than the nominal $3.1-\mathrm{GeV}$ setting of the storage ring, the inconsistent 3.1GeV cross sections then being caused by setting errors in the ring energy. The $3.2-\mathrm{GeV}$ enhance ment would arise from radiative corrections which give a high-energy tail to the structure.

We have now repeated the measurements using much finer energy steps and using a nuclear magnetic resonance magnetometer to monitor the ring energy. The magnetometer, coupled with measurements of the circulating beam position in the storage ring made at sixteen points around the orbit, allowed the relative energy to be determined to 1 part in 10^{4}. The determination of the absolute energy setting of the ring requires the knowledge of $\int B d l$ around the orbit and is accurate to $\pm 0.1 \%$.

The data are shown in Fig. 1. All cross sections are normalized to Bhabha scattering at 20 mrad. The cross section for the production of hadrons is shown in Fig. 1(a). Hadronic events are required to have in the final state either $\geqslant 3$ detected charged particles or 2 charged particle noncoplanar by $>20^{\circ} .^{2}$ The observed cross section rises sharply from a level of about 25 nb to a value of $2300 \pm 200 \mathrm{nb}$ at the peak ${ }^{3}$ and then exhibits the long high-energy tail characteristic of radiative corrections in $e^{+} e^{-}$reactions. The detection efficiency for hadronic events is 45% over the region shown. The error quoted above includes both the statistical error and a 7% contri bution from uncertainty in the detection efficiency.

Our mass resolution is determined by the energy spread in the colliding beams which arises from quantum fluctuations in the synchrotron radiation emitted by the beams. The expected Gaussian c.m. energy distribution ($\sigma=0.56 \mathrm{MeV}$) folded with the radiative processes ${ }^{4}$ is shown as the dashed curve in Fig. 1(a). The width of the resonance must be smaller than this spread; thus an upper limit to the full width at half-maximum is 1.3 MeV .

Figure 1(b) shows the cross section for $e^{+} e^{-}$ final states. Outside the peak this cross section

FIG. 1. Cross section versus energy for (a) multihadron final states, (b) $e^{+} e^{-}$final states, and (c) $\mu^{+} \mu^{-}$ $\pi^{+} \pi^{-}$, and $K^{+} K^{\circ}$ final states. The curve in (a) is the exected shape of a δ-function resonance folded with the Gaussian energy spread of the beams and including radiative processes. The cross sections shown in (b) and (c) are integrated over the detector acceptance. The total hadron cross section, (a), has been corrected or detection efficiency
is equal to the Bhabha cross section integrated over the acceptance of the apparatus. ${ }^{1}$
Figure 1(c) shows the cross section for the production of collinear pairs of particles, ex cluding electrons. At present, our muon identi-
proximately $10^{-34} \mathrm{~cm}^{2}$.
The most striking feature of J is the possibility that it may be one of the theoretically suggested charmed particles ${ }^{2}$ or $a^{\prime} s^{3}$ or Z_{0} 's, ${ }^{4}$ etc. In orcharmed particles
der study the real nature of $J,{ }^{5}$ measurements are now underway on the various decay modes, e.g., an $e \pi \nu$ mode would imply that J is weakly interacting in nature.
It is also important to note the absence of an $e^{+} e^{-}$continuum, which contradicts the predictions of parton models. ${ }^{6}$
We wish to thank Dr. R. R. Rau and the alternat ing-gradient synchrotron staff who have done an outstanding job in setting up and maintaining this experiment. We thank especially Dr. F. Eppling, B. M. Bailey, and the staff of the Laboratory for Nuclear Science for their help and encouragement. We thank also Ms. I. Schulz, Ms. H. Feind N. Feind, D. Osborne, G. Krey, J. Donahue, and
E. D. Weiner for help and assistance. We thank also M. Deutsch, V. F. Weisskopf, T. T. Wu, S. Drell, and S. Glashow for many interesting conversations.
\dagger Accepted without review under policy announced in Editorial of 20 July 1964 [Phys. Rev. Lett. 13, 79 (1964)].

The first work on $p+p \rightarrow \mu^{+}+\mu^{-}+x$ was done by L. Lederman et al., Phys. Rev. Lett. 25, 1523 (1970).
S. L. Glashow, private communication.
${ }^{3}$ T. D. Lee, Phys. Rev. Lett. 26, 801 (1971)
${ }^{4}$ S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967), and 27, 1688 (1971), and Phys. Rev. $\underline{5}$, 1412, 1962 (1974 ${ }^{5}$ After completion of this paper, we learned of a sim ilar result from SPEAR. B. Richter and W. Panofsky: private communication; Jo-E. Augustin et al., followil Letter [Phys. Rev. Lett. 33, 1404 (1974)].
${ }^{6}$ S. D. Drell and T. M. Yan, Phys. Rev. Lett. 25, 31 ((1970). An improved version of the theory is not in cc tradiction with the data.
observed at a c.m. energy of 3.2 GeV . Subsequently, we repeated the measurement at 3.2 GeV and also made measurements at 3.1 and 3.3 GeV . The $3.2-\mathrm{GeV}$ results reproduced, the 3.3GeV measurement showed no enhancement, but the $3.1-\mathrm{GeV}$ measurements were internally in-consistent-six out of eight runs giving a low cross section and two runs giving a factor of 3 to 5 higher cross section. This pattern could have been caused by a very narrow resonance at an energy slightly larger than the nominal $3.1-\mathrm{GeV}$ setting of the storage ring, the inconsistent 3.1GeV cross sections then being caused by setting errors in the ring energy. The $3.2-\mathrm{GeV}$ enhancement would arise from radiative corrections which give a high-energy tail to the structure.
We have now repeated the measurements using much finer energy steps and using a nuclear magnetic resonance magnetometer to monitor the ring energy. The magnetometer, coupled with measurements of the circulating beam position in the storage ring made at sixteen points around the orbit, allowed the relative energy to be determined to 1 part in 10^{4}. The determination of the absolute energy setting of the ring requires the knowledge of $\int B d l$ around the orbit and is accurate to $\pm 0.1 \%$.
The data are shown in Fig. 1. All cross sections are normalized to Bhabha scattering at 20 mrad. The cross section for the production of hadrons is shown in Fig. 1(a). Hadronic events are required to have in the final state either $\geqslant 3$ detected charged particles or 2 charged particles

FIG. 1. Cross section versus energy for (a) multihadron final states, (b) $e^{+} e^{-}$final states, and (c) $\mu^{+} \mu^{-}$ $\pi^{+} \pi^{-}$, and $K^{+} K^{\bullet}$ final states. The curve in (a) is the expected shape of a δ-function resonance folded with the Gaussian energy spread of the beams and including radiative processes. The cross sections shown in (b) and (c) are integrated over the detector acceptance. The total hadron cross section, (a), has been corrected or detection efficiency
is equal to the Bhabha cross section integrated over the acceptance of the apparatus. ${ }^{1}$
Figure 1(c) shows the cross section for the production of collinear pairs of particles, ex cluding electrons. At present, our muon identi-
fications system is not functioning and we therefore cannot separate muons from strongly interacting particles. However, outside the peak the data are consistent with our previously measured μ-pair cross section. Since a large $\pi \pi$ or $K K$ branching ratio would be unexpected for a resonance this massive, the two-body enhancement observed is probably but not conclusively in the μ-pair channel.
The $e^{+} e^{-} \rightarrow$ hadron cross section is presumed to go through the one-photon intermediate state with angular momentum, parity, and charge conjugation quantum numbers $J^{P C}=1^{--}$. It is difficult to understand how, without involving new quantum numbers or selection rules, a resonance in this state which decays to hadrons could be so narrow.

We wish to thank the SPEAR operations staff for providing the stable conditions of machine performance necessary for this experiment. Special monitoring and control techniques were developed on very short notice and performed ex-
cellently.

Work supported by the U. S. Atomic Energy Commission.
Present address: Laboratoire de l'Accélérateur Linéaire, Centre d'Orsay de l'Université de Paris, 91 Orsay, France.
\ddagger Permanent address: Institut de Physique Nucléaire Orsay, France.

Permanent address: Centre d’Etudes Nucléaires de Saclay, Saclay, France.
The apparatus is described by J.-E. Augustin et al., to be published.
${ }^{2}$ The detection-efficiency determination will be described in a future publication.
${ }^{3}$ While preparing this manuscript we were informed that the Massachusetts Institute of Technology group studying the reaction $p p \rightarrow e e^{-}+x$ at Brookhaven National Laboratory has observed an enhancement in the $e^{+} e^{-}$mass distribution at about 3100 MeV . J. J. Auber et al., preceding Letter [Phys. Rev. Lett. 33, 1402 (1974)].
${ }^{4}$ G. Bonneau and F. Martin, Nucl. Phys. B27, 381 (1971).

Preliminary Result of Frascati (ADONE) on the Nature of a New 3.1-GeV Particle

 Produced in $e^{+} e^{-}$Annihilation*C. Bacci, R. Balbini Celio, M. Berna-Rodini, G. Caton, R. Del Fabbro, M. Grilli, E. Iarocci M. Locci, C. Mencuccini, G. P. Murtas, G. Penso, G. S. M. Spinetti, M. Spano, B. Stella, and V. Valente

The Gamma-Gamma Group, Laboratori Nazionali di Frascati, Frascati, Italy

and

B. Bartoli, D. Bisello, B. Esposito, F. Felicetti, P. Monacelli, M. Nigro, L. Paolufi, I. Peruzzi, G. Piano Mortemi, M. Piccolo, F. Ronga, F. Sebastiani, L. Trasatti, and F. Vanoli The Magnet Experimental Group for ADONE, Laboratori Nazionali di Frascati, Frascati, Italy
and
G. Barbarino, G. Barbiellini, C. Bemporad, R. Biancastelli, F. Cevenini, M. Celvetti, F. Costantini, P. Lariccia, P. Parascandalo, E. Sassi, C. Spencer, L. Tortora, U. Troya, and S. Vitale

The Baryon-Antibaryon Group, Laboratori Nazionali di Frascati, Frascati, Italy (Received 18 November 1974)

We report on the results at ADONE to study the properties of the newly found $3.1-\mathrm{BeV}$ particle.

Soon after the news that a particle of 3.1 GeV with a width consistent with zero had been observed at Brookhaven National Laboratory by the Massachusetts Institute of Technology group, ${ }^{1}$ it was immediately decided to push ADONE beyond its nominal limit of energy ($2 \times 1.5 \mathrm{GeV}$) to look
for this particle. On the following day the information had reached us that this particle had also been observed at SPEAR at the energy of exactly 3.10 GeV with a narrow width, $<1.3 \mathrm{MeV}$. ${ }^{2}$
Three experiments ${ }^{3}$ the Gamma-Gamma Group, the Magnet Experimental Group for ADONE

FIG. 1. Result from the Gamma-Gamma Group, total of 446 events. The number of events per $0.3 \mathrm{nb}^{-1}$ luminosity is plotted versus the total c.m. energy of the machine.
(MEA), and the Baryon-Antibaryon Group], already prepared to analyze systematically the 1.5to $3.0-\mathrm{GeV}$ c.m. energy region, started to analyze the energy interval between 3.08 and 3.12 GeV in $0.5-\mathrm{MeV}$ steps. A striking increase in the total counting rate was observed soon afterwards in all three experiments, and the film analysis was immediately started. We report in the following the preliminary results that have been obtained. Results of the Gamma-Gamma Group. -The apparatus, which covers a solid angle of approximately $0.75 \times 4 \pi$, consists of optical spark chambers and wire chambers and is particularly suited to analyze the neutral and electromagnetic components (γ rays and electrons). The number of events in this reaction, $e^{+} e^{-} \rightarrow>3$ bodies (track or showers), is plotted in Fig. 1 in the region 3.090 to 3.112 GeV . The analysis of the events indicates an average charged multiplicity of 3.4 ± 0.5, with a maximum of 8 . The presence of K and a rather abundant photon component (average number of observed photons per event is 1.6 ± 0.1 with a maximum of 7) have been established. The experimental cross section at the top of the

TABLE I. Rate of events as a function of the total en ergy (MEA Group)

Total energy (MeV)	Total No. of events/0.6-nb luminosity	Hadronic events (noncollinear events)
3090	2 ± 2	0
3092	4 ± 3	2 ± 2
3094.5	4 ± 2	0
3096.5	4 ± 2	3 ± 2
3098.5	4 ± 2	3 ± 2
3100.5	26 ± 5	20 ± 5
3102.5	23 ± 4	15 ± 3
3104.5	10 ± 3	6 ± 2
3106.5	4 ± 2	0
3108.5	5 ± 2	1 ± 1
3110.5	4 ± 2	2 ± 1
3112	4 ± 3	0

peak is found to be approximately 800 nb . The energy resolution of ADONE is approximately $\pm 1.5 \mathrm{MeV}$; this has so far prevented a direct measurement of the cross section at the peak. Results of the MEA Group.-This group has concentrated on studying the reaction $e^{+}+e$ $\rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$, and hadrons. The experimental setup includes a large magnet with the field perpendicular to the beam direction and optical widegap spark chambers and narrow-gap shower spark chambers. The effective detection solid angle is $0.35 \times 4 \pi$. The trigger requires at least two tracks of particles of 120 and $180 \mathrm{MeV} / c$, respectively. The observed rate of multihadron events and the total production rate are given in Table I as a function of the total energy. The integrated luminosity has been measured by the ADONE accelerator group with a monitor based on small-angle Bhabha scattering and is $0.6 \mathrm{nb}^{-1}$ for each point. The multihadron events exhibit large multiplicity of both charged and neutral particles. Evidence for K production is also obtained.
Results of the Baryon-Antibaryon Group.-This group has also seen a clear signal in the trigger of events with two relativistic collinear tracks; a sixfold coincidence between two opposite collinear telescopes viewing the intersection was used in the trigger. The cosmic-ray background was rejected on line.
The observed cross section in this running condition can be related, under the assumption that the resonance has spin 1 and that the decay width for $e e$ pairs is equal to the decay width for $\mu \mu$
fications system is not functioning and we therefore cannot separate muons from strongly interacting particles. However, outside the peak the data are consistent with our previously measured μ-pair cross section. Since a large $\pi \pi$ or $K K$ branching ratio would be unexpected for a resonance this massive, the two-body enhancement observed is probably but not conclusively in the μ-pair channel.
The $e^{+} e^{-} \rightarrow$ hadron cross section is presumed to go through the one-photon intermediate state with angular momentum, parity, and charge conjugation quantum numbers $J^{P C}=1^{--}$. It is difficult to understand how, without involving new quantum numbers or selection rules, a resonance in this state which decays to hadrons could be so narrow.
We wish to thank the SPEAR operations staff for providing the stable conditions of machine performance necessary for this experiment. Special monitoring and control techniques were developed on very short notice and performed ex-
cellently.

Work supported by the U. S. Atomic Energy Commission.
Present address: Laboratoire de l'Accélérateur Linéaire, Centre d'Orsay de l'Université de Paris, 91 Orsay, France.
\ddagger Permanent address: Institut de Physique Nucléaire Orsay, France.

Permant adatestes Nucléaires de Saclay, Saclay, France.
The apparatus is described by J.-E. Augustin et al., to be published.
${ }^{2}$ The detection-efficiency determination will be described in a future publication.
${ }^{3}$ While preparing this manuscript we were informed that the Massachusetts Institute of Technology group studying the reaction $p p \rightarrow e e^{-}+x$ at Brookhaven National Laboratory has observed an enhancement in the $e^{+} e^{-}$mass distribution at about 3100 MeV . J. J. Auber et al., preceding Letter [Phys. Rev. Lett. 33, 1402 (1974)].
${ }^{4}$ G. Bonneau and F. Martin, Nucl. Phys. B27, 381 (1971).

Preliminary Result of Frascati (ADONE) on the Nature of a New 3.1-GeV Particle

 Produced in $e^{+} e^{-}$Annihilation*C. Bacci, R. Balbini Celio, M. Berna-Rodini, G. Caton, R. Del Fabbro, M. Grilli, E. Iarocci M. Locci, C. Mencuccini, G. P. Murtas, G. Penso, G. S. M. Spinetti, M. Spano, B. Stella, and V. Valente

The Gamma-Gamma Group, Laboratori Nazionali di Frascati, Frascati, Italy

and

B. Bartoli, D. Bisello, B. Esposito, F. Felicetti, P. Monacelli, M. Nigro, L. Paolufi, I. Peruzzi, G. Piano Mortemi, M. Piccolo, F. Ronga, F. Sebastiani, L. Trasatti, and F. Vanoli The Magnet Experimental Group for ADONE, Laboratori Nazionali di Frascati, Frascati, Italy
and
G. Barbarino, G. Barbiellini, C. Bemporad, R. Biancastelli, F. Cevenini, M. Celvetti, F. Costantini, P. Lariccia, P. Parascandalo, E. Sassi, C. Spencer, L. Tortora, U. Troya, and S. Vitale

The Baryon-Antibaryon Group, Laboratori Nazionali di Frascati, Frascati, Italy (Received 18 November 1974)

We report on the results at ADONE to study the properties of the newly found $3.1-\mathrm{BeV}$ particle.

Soon after the news that a particle of 3.1 GeV with a width consistent with zero had been observed at Brookhaven National Laboratory by the Massachusetts Institute of Technology group, ${ }^{1}$ it was immediately decided to push ADONE beyond its nominal limit of energy ($2 \times 1.5 \mathrm{GeV}$) to look
for this particle. On the following day the information had reached us that this particle had also been observed at SPEAR at the energy of exactly 3.10 GeV with a narrow width, $<1.3 \mathrm{MeV}$. ${ }^{2}$
Three experiments ${ }^{3}$ the Gamma-Gamma Group, the Magnet Experimental Group for ADONE

FIG. 1. Result from the Gamma-Gamma Group, total of 446 events. The number of events per $0.3 \mathrm{nb}^{-1}$ luminosity is plotted versus the total c.m. energy of the machine.
(MEA), and the Baryon-Antibaryon Group], already prepared to analyze systematically the 1.5to $3.0-\mathrm{GeV}$ c.m. energy region, started to analyze the energy interval between 3.08 and 3.12 GeV in $0.5-\mathrm{MeV}$ steps. A striking increase in the total counting rate was observed soon afterwards in all three experiments, and the film analysis was immediately started. We report in the following the preliminary results that have been obtained. Results of the Gamma-Gamma Group. -The apparatus, which covers a solid angle of approximately $0.75 \times 4 \pi$, consists of optical spark chambers and wire chambers and is particularly suited to analyze the neutral and electromagnetic components (γ rays and electrons). The number of events in this reaction, $e^{+} e^{-} \rightarrow>3$ bodies (track or showers), is plotted in Fig. 1 in the region 3.090 to 3.112 GeV . The analysis of the events indicates an average charged multiplicity of 3.4 ± 0.5, with a maximum of 8 . The presence of K and a rather abundant photon component (average number of observed photons per event is 1.6 ± 0.1 with a maximum of 7) have been established. The experimental cross section at the top of the

TABLE I Rate of events as a function of the total en ergy (MEA Group)

Total energy (MeV)	Total No. of events/0.6-nb luminosity	Hadronic events (noncollinear events)
3090	2 ± 2	0
3092	4 ± 3	2 ± 2
3094.5	4 ± 2	0
3096.5	4 ± 2	3 ± 2
3098.5	4 ± 2	3 ± 2
3100.5	26 ± 5	20 ± 5
3102.5	23 ± 4	15 ± 3
3104.5	10 ± 3	6 ± 2
3106.5	4 ± 2	0
3108.5	5 ± 2	1 ± 1
3110.5	4 ± 2	2 ± 1
3112	4 ± 3	0

peak is found to be approximately 800 nb . The energy resolution of ADONE is approximately $\pm 1.5 \mathrm{MeV}$; this has so far prevented a direct measurement of the cross section at the peak. Results of the MEA Group.-This group has concentrated on studying the reaction $e^{+}+e$ $\rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}$, and hadrons. The experimental setup includes a large magnet with the field perpendicular to the beam direction and optical widegap spark chambers and narrow-gap shower spark chambers. The effective detection solid angle is $0.35 \times 4 \pi$. The trigger requires at least two tracks of particles of 120 and $180 \mathrm{MeV} / c$, respectively. The observed rate of multihadron events and the total production rate are given in Table I as a function of the total energy. The integrated luminosity has been measured by the ADONE accelerator group with a monitor based on small-angle Bhabha scattering and is $0.6 \mathrm{nb}^{-1}$ for each point. The multihadron events exhibit large multiplicity of both charged and neutral particles. Evidence for K production is also obtained.
Results of the Baryon-Antibaryon Group.-This group has also seen a clear signal in the trigger of events with two relativistic collinear tracks; a sixfold coincidence between two opposite collinear telescopes viewing the intersection was used in the trigger. The cosmic-ray background was rejected on line.
The observed cross section in this running condition can be related, under the assumption that the resonance has spin 1 and that the decay width for $e e$ pairs is equal to the decay width for $\mu \mu$

New Quark

- Very narrow resonance
- meson made of charm (c) \& anti-charm (ㄷ)
- later, more mesons with "naked charm" with u, d, s quarks $\left(D^{+}, D^{0}, D_{s}, \ldots\right)$
- all made sense using quarks
- people were forced to accept the idea of quarks

New Quark

sonance

ff charm (c) \& anti-charm (c) sons with "naked charm"
rks ($\left.D^{+}, D^{0}, D_{s}, \ldots\right)$
using quarks
prced to accept the idea of

New Quark

Table 14.3: $q \bar{q}$ quark-model assignments for the observed heavy mesons. Mesons in bold face are in

$n^{2 s+1} \ell_{J}$		$\begin{gathered} \mathrm{I}=0 \\ c \bar{c} \end{gathered}$	$\begin{gathered} \mathrm{I}=0 \\ b \bar{b} \end{gathered}$	$\begin{gathered} \mathrm{I}=\frac{1}{2} \\ c \bar{u}, c \bar{d} ; \bar{c} u, \bar{c} d \end{gathered}$	$\begin{aligned} & \mathrm{I}=0 \\ & c \bar{s} ; \bar{c} s \end{aligned}$
$1^{1} S_{0}$	0^{-+}	$\eta_{c}(1 S)$	$\eta_{b}(1, S)$	D	$D_{s}^{ \pm}$
$1{ }^{3} S_{1}$	1^{--}	$J / \psi(1 S)$	$\Upsilon(1 S)$	D^{*}	$D_{s}^{* \pm}$
$1^{1} P_{1}$	1^{+-}	$h_{c}(1 P)$		$D_{1}(2420)$	$D_{s 1}(2536)^{ \pm}$
$1^{3} P_{0}$	0^{++}	$\chi_{c 0}(1 P)$	$\chi_{b 0}(1 P)$		$D_{s 0}^{*}(2317)^{ \pm \dagger}$
$1^{3} P_{1}$	1^{++}	$\chi_{c 1}(1 P)$	$\chi_{b 1}(1 P)$		$D_{s 1}(\mathbf{2 4 6 0})^{ \pm \dagger}$
$1{ }^{3} P_{2}$	2^{++}	$\chi_{c 2}(1 P)$	$\chi_{b 2}(1 P)$	$D_{2}^{*}(2460)$	$D_{s 2}(2573)^{ \pm}$
$1^{3} D_{1}$	1^{--}	$\psi(3770)$			
$2^{1} S_{0}$	0^{-+}	$\eta_{c}(2 S)$			
$2^{3} S_{1}$	1^{--}	$\psi(2 S)$	$r(2 S)$		
$2^{3} P_{0,1,2}$	$0^{++}, 1^{++}, 2^{++}$		$\chi_{b 0,1,2}(2 P)$		

\dagger The masses of these states are considerably smaller than most theoretical predictions. They have a (See the "Note on Non $-q \bar{q}$ Mesons" at the end of the Meson Listings). The $D_{s 1}(2460)^{ \pm}$and $D_{s 1}(25$

color

- actually, color was not just a fix

- only "white" combination was not confined
- baryon=R+G+B=white
- meson $=\mathrm{R}$ +anti- $\mathrm{R}=$ white
- maybe color is the source for force?
- color creates gluon just like the electric charge creates photon?

gluon's color

- quark has three colors
- gluon acts on the three

$$
\lambda^{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$ colors: 3×3 matrices!

- $\begin{aligned} & \text { but cares only about the } \\ & \\ & \text { difference between colors, }\end{aligned} \lambda^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right), \quad \lambda^{4}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$, not on the overall baryon

$$
\lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right)
$$

$$
\lambda^{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

- keep the matrices traceless
- $3^{2}-I=8$ gluons

$$
\lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right),
$$

- $T^{\mathrm{a}}=\lambda^{\mathrm{a}} / 2$

$$
\lambda^{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

- SU(3) gauge theory

Gauge Theory

- Physics shouldn't change not matter which color you call red, blue, or green

$$
\psi=\left(\begin{array}{l}
\psi_{R} \\
\psi_{G} \\
\psi_{B}
\end{array}\right)
$$

- arbitrary change of basis in three colors: $3 \times 3 \cup$

$$
\psi(x) \rightarrow \psi^{\prime}(x)=U(x) \psi(x)
$$

- also arbitrarily on where you are: $U(x) \quad A_{\mu}=A_{\mu}^{a} T^{a} \rightarrow A_{\mu}^{\prime}=U A_{\mu} U^{\dagger}-\frac{i}{g_{s}} U \partial_{\mu} U^{\dagger}$
but want to keep the Dirac equation unchanged

$$
\left[i \gamma^{\mu}\left(\partial_{\mu}-i g_{s} A_{\mu}\right)-m\right] \psi=0
$$

- need gauge field A_{μ}

$$
\left[i \gamma^{\mu}\left(\partial_{\mu}-i g_{s} A_{\mu}^{\prime}\right)-m\right] \psi^{\prime}=0
$$

SU(N)

- $\operatorname{SU}(N)$ is a group of $N x$ N matrices

$$
U=e^{-i \omega^{a} T^{a}}
$$

- S: special (det=I)

$$
U U^{\dagger}=1 \leftrightarrow T^{a \dagger}=T^{a}
$$

- U: unitary

$$
\begin{gathered}
\operatorname{det} U=e^{-i \omega^{a} \operatorname{Tr} T^{a}}=1 \\
{\left[T^{a}, T^{b}\right]=i f^{a b c} T^{c}}
\end{gathered}
$$

- N^{2}-I generators: $N \times N$ hermitian matrices with zero trace
- generators satisfy commutation relations Lie groups are completely classified $\operatorname{SU}(N), S O(N), \operatorname{Sp}(N), G_{2}, F_{4}, E_{6}, E_{7}, E_{8}$ (Lie algebra)

fleasymptotic

 freedom

Pnasymptotic freedom

source of our weight

- up, down quarks are very light (2-IOMeV)
- quarks move around in a proton of size $\approx 0.7 \mathrm{fm}$
- this kinetic energy is much of the source of proton mass
- $E_{q} \approx c p \approx \hbar c / \Delta x$
$\approx 0.2 \mathrm{GeV} \mathrm{fm} / 0.7 \mathrm{fm}$
$\approx 0.3 \mathrm{GeV}$
- $3 E_{q} \approx 1 \mathrm{GeV} \approx m_{p}$

source of our weight

- up, down quarks are very light (2-IOMeV)
- quarks move around in a proton of size $\approx 0.7 \mathrm{fm}$
- this kinetic energy is much of the source of proton mass
- $E_{q} \approx c p \approx \hbar c / \Delta x$
$\approx 0.2 \mathrm{GeV} \mathrm{fm} / 0.7 \mathrm{fm}$
$\approx 0.3 \mathrm{GeV}$
- $3 E_{q} \approx 1 \mathrm{GeV} \approx m_{p}$

Spin

- production angle distribution well above the threshold:
- spin I/2

Thursday, July 23, 2009

gluon has color too

- gluon discovered and its spin determined at PETRA, DESY, Germany
- gluon can emit a gluon, too, because it also has color
- gluon self-coupling was discovered at TRISTAN experiment in Japan
- LEP determined that it really has to be SU(3)

gluon has color too

strong force

- now we believe it is understood theoretically
- but in order to compute bound state quantities, we need to face strong coupling
- no good approximation method
- put the QFT on a computer and do calculations by brute force
- lattice QCD
- months on supercomputers

strong force

- now we believe it is understood theoretically
- but in order to compute bound state quantities, we need to face strong coupling
- no good approximation method
- put the QFT on a computer and do calculations by brute force
- lattice QCD
- months on supercomputers

Our "particle accelerators"

IBM Blue Gene/L (JUBL), FZ Jülich 45.8 Tflop/s peak

IBM Blue Gene/P (JUGENE), FZ Jülich 223 Tflop/s peak

IBM Blue Gene/P (Babel), IDRIS Paris 139 Tflop/s peak

And computer clusters at Uni. Wuppertal and CPT Marseille
probability to find a "parton" i of momentum $\times p$ parton distribution function $f_{i}\left(x_{i}\right)$
P p collision = sum of parton-parton collision

$$
\sigma=\int_{0}^{a} d x_{1} \int_{0}^{1} d x_{2} f_{i}\left(x_{1}\right) f_{i}\left(x_{2}\right) \sigma(i j \rightarrow X)
$$

but if you look closely (high Q^{2}), partons split further
probability to find a "parton" i of momentum $\times p$ parton distribution function $f_{i}\left(x_{i}\right)$
P p collision = sum of parton-parton collision

$$
\sigma=\int_{0}^{a} d x_{1} \int_{0}^{1} d x_{2} f_{i}\left(x_{1}\right) f_{i}\left(x_{2}\right) \sigma(i j \rightarrow X)
$$

but if you look closely (high Q^{2}), partons split further

probability to find a "parton" i of momentum $\times p$ parton distribution function $f\left(x_{i}\right)$
P p collision = sum of parton-parton collision

$$
\sigma=\int_{0}^{a} d x_{1} \int_{0}^{1} d x_{2} f_{i}\left(x_{1}\right) f_{i}\left(x_{2}\right) \sigma(i j \rightarrow X)
$$

but if you look closely (high Q^{2}), partons split further

$$
\frac{d f_{i}(x)}{d Q^{2}}=\int_{x}^{1} d x^{\prime} f_{j}\left(x^{\prime}\right) P(j \rightarrow i+X)
$$

pretend this is the only diagram

pretend this is parton-level cross section

$$
i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p)
$$

$$
i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p)
$$

$$
\begin{gathered}
i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p) \\
\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0,-1, \pm i, 0)
\end{gathered}
$$

pretend this is the only diagram

$$
\begin{gathered}
i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p) \\
\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0,-1, \pm i, 0)
\end{gathered}
$$

$\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0, i \sin \phi \mp \cos \theta \cos \phi,-i \cos \phi \mp \cos \theta \sin \phi, \pm \sin \theta)$

$$
\begin{gathered}
i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p) \\
\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0,-1, \pm i, 0)
\end{gathered}
$$

$\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0, i \sin \phi \mp \cos \theta \cos \phi,-i \cos \phi \mp \cos \theta \sin \phi, \pm \sin \theta)$ $i \mathcal{M}=-i g_{s}^{2}\left(T^{a}\right)_{i j}\left(T^{a}\right)_{k l} \times$| helicity | + | - |
| :---: | :---: | :---: |
| + | $(1+\cos \theta) e^{-i \phi}$ | $-(1-\cos \theta) e^{i \phi}$ |
| - | $(1-\cos \theta) e^{-i \phi}$ | $-(1+\cos \theta) e^{i \phi}$ |

example of parton-level cross section

$$
\begin{gathered}
i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p) \\
\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0,-1, \pm i, 0)
\end{gathered}
$$

$\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0, i \sin \phi \mp \cos \theta \cos \phi,-i \cos \phi \mp \cos \theta \sin \phi, \pm \sin \theta)$

$$
i \mathcal{M}=-i g_{s}^{2}\left(T^{a}\right)_{i j}\left(T^{a}\right)_{k l} \times \begin{array}{|c|c|c|}
& \text { helicity } & + \\
\hline+ & (1+\cos \theta) e^{-i \phi} & -(1-\cos \theta) e^{i \phi} \\
\hline- & (1-\cos \theta) e^{-i \phi} & -(1+\cos \theta) e^{i \phi} \\
\hline
\end{array}
$$

$$
\sigma=\frac{1}{8 \pi} \frac{1}{2 s} \frac{1}{N_{c}} \frac{1}{N_{c}} \frac{1}{2} \frac{1}{2} \sum_{\text {colors helicities }} \sum_{4 \pi} \int \frac{d \Omega}{|\mathcal{M}|^{2}=\frac{4 \pi \alpha_{s}^{2}}{3 s} \frac{N_{c}^{2}-1}{4 N_{c}^{2}}, ~}
$$

http://hitoshi.berkeley,edu/I29A
example of parton-level cross section

$i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p)$

$$
\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0,-1, \pm i, 0)
$$

$\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0, i \sin \phi \mp \cos \theta \cos \phi,-i \cos \phi \mp \cos \theta \sin \phi, \pm \sin \theta)$

$$
i \mathcal{M}=-i g_{s}^{2}\left(T^{a}\right)_{i j}\left(T^{a}\right)_{k l} \times \begin{array}{|c|c|c|}
\hline \text { helicity } & + & - \\
\hline+ & (1+\cos \theta) e^{-i \phi} & -(1-\cos \theta) e^{i \phi} \\
\hline- & (1-\cos \theta) e^{-i \phi} & -(1+\cos \theta) e^{i \phi} \\
\hline
\end{array}
$$

$$
\sigma=\frac{1}{8 \pi} \frac{1}{2 s} \frac{1}{N_{c}} \frac{1}{N_{c}} \frac{1}{2} \frac{1}{2} \sum_{\text {colors helicities }} \int \frac{d \Omega}{4 \pi}|\mathcal{M}|^{2}=\frac{4 \pi \alpha_{s}^{2}}{3 s} \frac{N_{c}^{2}-1}{4 N_{c}^{2}}
$$

example of parton-level cross section

$i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p)$

$$
\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0,-1, \pm i, 0)
$$

$\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0, i \sin \phi \mp \cos \theta \cos \phi,-i \cos \phi \mp \cos \theta \sin \phi, \pm \sin \theta)$

$$
i \mathcal{M}=-i g_{s}^{2}\left(T^{a}\right)_{i j}\left(T^{a}\right)_{k l} \times \begin{array}{|c|c|c|}
\hline \text { helicity } & + & - \\
\hline+ & (1+\cos \theta) e^{-i \phi} & -(1-\cos \theta) e^{i \phi} \\
\hline- & (1-\cos \theta) e^{-i \phi} & -(1+\cos \theta) e^{i \phi} \\
\hline
\end{array}
$$

$$
\sigma=\frac{1}{8 \pi} \frac{1}{2 s} \frac{1}{N_{c}} \frac{1}{N_{c}} \frac{1}{2} \frac{1}{2} \sum_{\text {colors helicities }} \sum_{4 \pi} \int \frac{d \Omega}{4 \pi}|\mathcal{M}|^{2}=\frac{4 \pi \alpha_{s}^{2}}{3 s} \frac{N_{c}^{2}-1}{4 N_{c}^{2}}
$$

example of parton-level cross section

$i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p)$

$$
\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0,-1, \pm i, 0)
$$

$\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0, i \sin \phi \mp \cos \theta \cos \phi,-i \cos \phi \mp \cos \theta \sin \phi, \pm \sin \theta)$ $i \mathcal{M}=-i g_{s}^{2}\left(T^{a}\right)_{i j}\left(T^{a}\right)_{k l} \times$| helicity | + | - |
| :---: | :---: | :---: |
| + | $(1+\cos \theta) e^{-i \phi}$ | $-(1-\cos \theta) e^{i \phi}$ |
| - | $(1-\cos \theta) e^{i \phi}$ | $-(1+\cos \theta) e^{i \phi}$ |

$\sigma=\frac{1}{8 \pi} \frac{1}{2 s} \frac{1}{N_{c}} \frac{1}{N_{c}} \frac{1}{2} \frac{1}{2} \sum_{\text {colors helicities }} \int \frac{d \Omega}{4 \pi}|\mathcal{M}|^{2}=\frac{4 \pi \alpha_{s}^{2}}{3 s} \frac{N_{c}^{2}-1}{4 N_{c}^{2}}$
example of parton-level cross section

pretend this is the only diagram
$i \mathcal{M}=\bar{u}\left(k^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\mu} v(k) \frac{-i \delta^{a b} g_{\mu \nu}}{q^{2}} \bar{v}\left(p^{\prime}\right)\left(-i g_{s} T^{a}\right) \gamma^{\nu} u(p)$

$$
\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0,-1, \pm i, 0)
$$

$\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0, i \sin \phi \mp \cos \theta \cos \phi,-i \cos \phi \mp \cos \theta \sin \phi, \pm \sin \theta)$ $i \mathcal{M}=-i g_{s}^{2}\left(T^{a}\right)_{i j}\left(T^{a}\right)_{k l} \times$| helicity | + | - |
| :---: | :---: | :---: |
| + | $(1+\cos \theta) e^{-i \phi}$ | $-(1-\cos \theta) e^{i \phi}$ |
| - | $(1-\cos \theta) e^{-i \phi}$ | $-(1+\cos \theta) e^{i \phi}$ |

$\sigma=\frac{1}{8 \pi} \frac{1}{2 s} \frac{1}{N_{c}} \frac{1}{N_{c}} \frac{1}{2} \frac{1}{2} \sum_{\text {colors helicities }} \int \frac{d \Omega}{4 \pi}|\mathcal{M}|^{2}=\frac{4 \pi \alpha_{s}^{2}}{3 s} \frac{N_{c}^{2}-1}{4 N_{c}^{2}}$

$$
\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0,-1, \pm i, 0)
$$

$\bar{v}\left(p^{\prime}\right) \gamma^{\nu} u(p)=2 E(0, i \sin \phi \mp \cos \theta \cos \phi,-i \cos \phi \mp \cos \theta \sin \phi, \pm \sin \theta)$

$i \mathcal{M}=-i g_{s}^{2}\left(T^{a}\right)_{i j}\left(T^{a}\right)_{k l} \times$| helicity | + | - |
| :---: | :---: | :---: |
| + | $(1+\cos \theta) e^{-i \phi}$ | $-(1-\cos \theta) e^{i \phi}$ |
| - | $(1-\cos \theta) e^{-i \phi}$ | $-(1+\cos \theta) e^{i \phi}$ |

$\sigma=\frac{1}{8 \pi} \frac{1}{2 s} \frac{1}{N_{c}} \frac{1}{N_{c}} \frac{1}{2} \frac{1}{2} \sum_{\text {colors helicities }} \sum \int \frac{d \Omega}{4 \pi}|\mathcal{M}|^{2}=\frac{4 \pi \alpha_{s}^{2}}{3 s} \frac{N_{c}^{2}-1}{4 N_{c}^{2}}$
final state solid angle http://hitoshi.berkeley.edu/I29A

Standard Model 4

CERN Summer Student Programme July 23， 2009

Hitoshi Murayama（IPMU Tokyo \＆Berkeley）

Weak Interaction Electroweak Theory

Weak Interaction Electroweak Theory Beware: too many matrices!

Fermi theory

- beta decay=decay of neutrons inside nuclei
- $n \rightarrow p e^{-} \overline{\mathrm{V}}_{\mathrm{e}}$
- coupling strength is $\mathrm{Gv}_{\mathrm{V}}=\mathrm{I} . \mid 36 \mathrm{I} 0^{-5} \mathrm{GeV}^{-2}$
- vast range of nuclear lifetimes can be given by just a single constant!
- dimensional estimate: $\Gamma \propto G F^{2} Q^{5}, ~ Q=E_{f}-E_{i}$
that the product

$$
\begin{equation*}
\tau F\left(\eta_{0}\right) \tag{51}
\end{equation*}
$$

has the same order of magnitude for all allowed transitions. If, however, the transition in question is forbidden, the lifetime is about 100 times greater than in the normal case and, therefore, the product (51) will be correspondingly larger.

Table II. The values of $\tau F\left(\eta_{0}\right)$ for the radioactive elements for which there are sufficient data on the continuous β spectra.

Element	τ (hours)	η_{0}	$F\left(\eta_{0}\right)$	$\tau F\left(\eta_{0}\right)$
UX_{2}	0.026	5.4	115	3.0
RaB	0.64	2.04	1.34	0.9
ThB	15.3	1.37	0.176	2.7
$\mathrm{ThC}^{\prime \prime}$	0.076	4.4	44	3.3
$\mathrm{AcC}^{\prime \prime}$	0.115	3.6	17.6	2.0
$\mathrm{RaC}_{\mathrm{RaE}}$	0.47	7.07	398	190
ThC	173	3.23	10.5	1800
MsTh_{2}	8.8	5.2	95	230

In Table II, the product (51) is tabulated for the radioactive elements for which one has sufficient data concerning the continuous β spectrum. From Table II the two anticipated groups are immediately recognizable. Indeed, such a classification has already been established empirically by Sargent, ${ }^{13}$ from whose work the values of η_{0}

[^0]11 one assumes, say, unat $\tau F\left(\eta_{0}\right)=1$ (1.e. measured in seconds, $=3600$) in the cases where the integral (50) equals unity, one obtains from Eq. (45)

$$
g=4\left(10^{-50}\right) \mathrm{cm}^{3} \mathrm{erg} .
$$

This value naturally will be only an order of magnitude of g.

To summarize, one can say that this comparison of theory and experiment gives as good an agreement as one could expect. The discrepancies found for the hard-to-pin-down data for elements, RaD and AcB , probably could be explained in part through inaccuracy of the measurements, partly, also, by the abnormally large, although not at all implausible, variations of the matrix elements in Eq. (50). Note further that one can

-

Fig. 2. Velocity distribution curves for different values of η_{0}.

Universality

	$\mathrm{t}_{1 / 2}(\mathrm{~s})$	$\mathrm{G}_{v}\left(\mathrm{GeV}^{-2}\right)$
${ }^{14} \mathrm{O}$	70603	1.156
${ }^{26} \mathrm{Al}^{\mathrm{m}}$	6344.9	1.157
${ }^{34} \mathrm{Cl}$	1525.8	1.154
${ }^{38} \mathrm{~K}^{\mathrm{m}}$	923.95	1.154
${ }^{42} \mathrm{Sc}$	679.90	1.155
${ }^{46} \mathrm{~V}$	422.37	1.155
${ }^{50} \mathrm{Mn}$	283.07	1.156
${ }^{54} \mathrm{Co}$	193.23	1.155

J. C. Hardy and I. S. Towner, Phys. Rev. Lett. 94, 092502 (2005)

Fermi Scale

- $\mathrm{GF}^{-1 / 2}=300 \mathrm{GeV}$
- $G F^{I / 2}=6.7 \times 10^{-17} \mathrm{~cm}$
- We will be there soon!

Fermi Scale

- $\mathrm{GF}^{-1 / 2}=300 \mathrm{GeV}$
- $G F^{I / 2}=6.7 \times 10^{-17} \mathrm{~cm}$
- We will be there soon!

Universality

- Fermi tried something analogous to QED, but the force is short-ranged
- a new massive spin I boson? (W boson)
- $\mathrm{G}_{\mathrm{F}}=\mathrm{I} .16637(\mathrm{I}) 10^{-5} \mathrm{GeV}^{-2}$
- $\mathrm{Gr}_{\mathrm{V}}=\mathrm{I} .136(3) 10^{-5} \mathrm{GeV}^{-2}$
- agreed with past accuracies
- but don't agree with current accuracies

Cabibbo

angle

- strange quark decays into up quark, too
- generalized universality
- the total strength of weak interaction into the up quark
- $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}=1$
- $V_{u d}=\cos \theta_{c,} V_{u s}=\sin \theta_{c}$
- Idea is that up quark is paired with a linear combination $d^{\prime}=d V_{u d}+s V_{u s}$
- Now very well tested:

strange quark decay

T- θ puzzle

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd
- this is parity odd particle

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd
- this is parity odd particle
- $\theta^{+} \rightarrow \pi^{+} \pi^{0}$

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd
- this is parity odd particle
- $\theta^{+} \rightarrow \pi^{+} \pi^{0}$
- this is parity even particle

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd
- this is parity odd particle
- $\theta^{+} \rightarrow \pi^{+} \pi^{0}$
- this is parity even particle
- But exactly the same mass, same lifetime!

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd
- this is parity odd particle
- $\theta^{+} \rightarrow \pi^{+} \pi^{0}$
- this is parity even particle
- But exactly the same mass, same lifetime!
- C.N. Yang and T.D. Lee made a striking proposal in 1956

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd
- this is parity odd particle
- $\theta^{+} \rightarrow \pi^{+} \pi^{0}$
- this is parity even particle
- But exactly the same mass, same lifetime!
- C.N. Yang and T.D. Lee made a striking proposal in 1956

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd
- this is parity odd particle
- $\theta^{+} \rightarrow \pi^{+} \pi^{0}$
- this is parity even particle
- But exactly the same mass, same lifetime!
- C.N. Yang and T.D. Lee made a striking proposal in 1956
- parity is conserved by gravity, electromagnetism, strong interaction, but maybe not by the weak interaction

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd
- this is parity odd particle
- $\theta^{+} \rightarrow \pi^{+} \pi^{0}$
- this is parity even particle
- But exactly the same mass, same lifetime!
- C.N. Yang and T.D. Lee made a striking proposal in 1956
- parity is conserved by gravity, electromagnetism, strong interaction, but maybe not by the weak interaction
- If so, $\mathrm{T}^{+}, \theta^{+}$could be the same particle $\left(K^{+}\right)$

T- θ puzzle

- $\mathrm{T}^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}$
- each pion is parity odd
- this is parity odd particle
- $\theta^{+} \rightarrow \pi^{+} \pi^{0}$
- this is parity even particle
- But exactly the same mass, same lifetime!
- C.N. Yang and T.D. Lee made a striking proposal in 1956
- parity is conserved by gravity, electromagnetism, strong interaction, but maybe not by the weak interaction
- If so, $\mathrm{T}^{+}, \theta^{+}$could be the same particle $\left(K^{+}\right)$
- weak interaction is lefthanded, namely it acts only of left-handed quarks and leptons

C.S.Wu's experiment

C.S.Wu's experiment

Quickest Nobel prize
I 956 paper and I 957 prize to Lee \& Yang!

Big shock!

Big shock!

- Right and Left are fundamentally different

Big shock!

- Right and Left are fundamentally different

Big shock!

- Right and Left are fundamentally different
- You can tell aliens on a distant planet which is right, which is left

Big shock!

- Right and Left are fundamentally different
- You can tell aliens on a distant planet which is right, which is left

Big shock!

- Right and Left are fundamentally different
- You can tell aliens on a distant planet which is right, which is left
- should not be related to why most humans are right-handed

Helicity of Neutrinos*

M. Goldhaber, L. Grodzins, and A. W. Sunyar Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

A COMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with $\mathrm{Eu}^{152 m}$, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, ${ }^{1} 0-$, we find that the neutrino is "left-handed," i.e., $\boldsymbol{\sigma}_{\nu} \cdot \hat{p}_{\nu}=-1$ (negative helicity).

Helicity of Neutrinos*

M. Goldhaber, L. Grodzins, and A. W. Sunyar Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

- Famous experiment by Goldhaber, Grodzins, Sunyar
- Neutrinos are all left-handed

ACOMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with $\mathrm{Eu}^{152 m}$, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, ${ }^{1} 0-$, we find that the neutrino is "left-handed," i.e., $\boldsymbol{\sigma}_{\nu} \cdot \hat{p}_{\nu}=-1$ (negative helicity).

- This of course violates parity
- What about CP?
- All anti-neutrinos are righthanded
- CP still appears still good!

CP

Helicity of Neutrinos*

M. Goldhaber, L. Grodzins, and A. W. Sunyar Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

- Famous experiment by Goldhaber, Grodzins, Sunyar
- Neutrinos are all left-handed

ACOMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with $\mathrm{Eu}^{152 m}$, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, ${ }^{1} 0-$, we find that the neutrino is "left-handed," i.e., $\boldsymbol{\sigma}_{\nu} \cdot \hat{p}_{\nu}=-1$ (negative helicity).

- This of course violates parity
- What about CP?
- All anti-neutrinos are righthanded
- CP still appears still good!

- We need many left-handed doublets
$\binom{\nu_{e}}{e},\binom{\nu_{\mu}}{\mu},\binom{u}{d^{\prime}=d V_{u d}+s V_{u s}},\binom{c}{s^{\prime}=d V_{c d}+s V_{c s}}$
- W-boson raises or lowers within doublets
- needs generators of the types

$$
\begin{aligned}
& \frac{1}{2} \tau_{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \frac{1}{2} \tau_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
\end{aligned}
$$

- Looks like SU(2)!
- But then what about the third one

$$
\frac{1}{2} \tau_{3}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- not quite electric charges....

strange quark decay

Glashow-Weinberg-

- Need something weird
- need both SU(2) \& U(I)
- four generators
- $\mathrm{T}_{1}, \mathrm{~T}_{2}: \mathrm{W}^{ \pm}$bosons for
"charged-current weak
- $\mathrm{T}_{1}, \mathrm{~T}_{2}: \mathrm{W}^{ \pm}$bosons for
"charged-current weak interaction"
- use one combination $1 / 2 \mathrm{~T}_{3}+Y$ for photon

$$
\frac{1}{2} \tau_{1}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Salam Model

- then remaining combination is a new force "neutral-current

$$
Q=\frac{1}{2} \tau_{3}+Y=\left(\begin{array}{cc}
\frac{1}{2}+Y & 0 \\
0 & -\frac{1}{2}+Y
\end{array}\right)
$$ Salam Model

$$
\begin{gathered}
\binom{\nu_{e}}{e},\binom{\nu_{\mu}}{\mu},\binom{u}{d^{\prime}=d V_{u d}+s V_{u s}},\binom{c}{s^{\prime}=d V_{c d}+s V_{c s}} \\
Q=\frac{1}{2} \tau_{3}+Y=\left(\begin{array}{cc}
\frac{1}{2}+Y & 0 \\
0 & -\frac{1}{2}+Y
\end{array}\right)
\end{gathered}
$$

- For lepton doublets, we need $Y=-1 / 2$, so that electric charges are $Q=l_{3}+Y=0$ and $-I$
- For quark doublets, we need $Y=1 / 6$, so that the charges are $Q=+2 / 3$ and $-1 / 3$

photon and Z

- Interaction with quarks \& leptons

$$
\begin{aligned}
& g \frac{1}{2}\left(\begin{array}{cc}
W_{\mu}^{3} & W_{\mu}^{1}-i W_{\mu}^{2} \\
W_{\mu}^{1}+i W_{\mu}^{2} & -W_{\mu}^{3}
\end{array}\right)+g^{\prime} Y B_{\mu} \\
& =\frac{1}{2} g\left(\begin{array}{cc}
0 & \sqrt{2} W_{\mu}^{+} \\
\sqrt{2} W_{\mu}^{-} & 0
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{2} g W_{\mu}^{3}+g^{\prime} Y B_{\mu} & 0 \\
0 & -\frac{1}{2} g W_{\mu}^{3}+g^{\prime} Y B_{\mu}
\end{array}\right)
\end{aligned}
$$

- introduce the weak mixing angle θ_{W} and write $\binom{B_{\mu}}{W_{\mu}^{3}}=\left(\begin{array}{cc}\cos \theta_{W} & -\sin \theta_{W} \\ \sin \theta_{W} & \cos \theta_{W}\end{array}\right)\binom{A_{\mu}}{Z_{\mu}}$
- Now make sure photon couples correctly
$g^{\prime} Y \cos \theta_{W}+g I_{3} \sin \theta_{W}=e\left(I_{3}+Y\right)=e Q$
$g^{\prime} \cos \theta_{W}=g \sin \theta_{W}=e$

photon and Z

- Now we know how Z couples

$$
\begin{aligned}
& g I_{3} \cos \theta_{W}-g^{\prime} Y \sin \theta_{W} \\
& \quad=\frac{e}{\sin \theta_{W} \cos \theta_{W}}\left(I_{3} \cos ^{2} \theta_{W}-Y \sin ^{2} \theta_{W}\right) \\
& \quad=g_{Z}\left(I_{3}-Q \sin ^{2} \theta_{W}\right)
\end{aligned}
$$

- a new force that does not change the charge, but couples to neutrinos!
- Gargamelle found it in 1973 in the reaction $V_{\mu} \mathrm{e}^{-} \rightarrow \mathrm{V}_{\mu} \mathrm{e}^{-}$, see François' lectures

Back to Fermi

- Fermi constant comes from exchange of W boson
$G_{F}=1.16637(1) \times 10^{-5} \mathrm{GeV}^{-2}=\frac{g^{2}}{4 \sqrt{2} m_{W}^{2}}$
- Can't predict mw unless you know $g=e / \sin \theta_{w}$
- Thankfully, NC weak interaction strengths depend on $\theta_{w} \frac{e}{s_{W} c_{W}}\left(I_{3}-Q s_{W}^{2}\right)$
- neutrino experiments and an ed scattering experiment measured θ_{w}, and predicted $m_{w} \approx 80 \mathrm{GeV}, m_{z} \approx 90 \mathrm{GeV}$

Discovery of W and Z

- SppS at CERN produced W and Z (1983)
- 1984 Nobel to Rubbia and van der Meer
- LEP mass-produced $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{Z}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow W^{+} W^{-}$
- very precise measurements

Discovery of W and Z

- SppS at CERN produced W and Z (1983)
- 1984 Nobel to Rubbia and van der Meer
- LEP mass-produced
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{Z}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathbf{W}^{-}$
- very precise measurements

Discovery of W and Z

- SppS at CERN produced W and Z (I983)
- I984 Nobel to Rubbia and van der Meer
- LEP mass-produced $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathbf{Z}, \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} W^{-}$
- very precise measurements

the moon and TGV

the moon and TGV

the moon andTGV

LEP discovered

17.11.1995

LEP Polarization Team
17.11.199

A big hole

 Higgs
Why short-ranged?

- gravity pull masses (longranged)
- electromagnetism repels like charges (long-ranged)
- weak force pulls protons and electrons (shortranged) acts only over a billionth of a nanometer

- We know the energy scale: $\sim 0.3 \mathrm{TeV}$

Mystery deepens

- Strangely, only left-handed particles participate in the weak force
- That sounds OK as long as they are moving
- but when they stop???

We are swimming in Dark Field

- There is quantum liquid filling our Universe
- It doesn't disturb gravity or electric force
- It does disturb weak force and make it shortranged
- It slows down all elementary particles from speed of light
- otherwise no atoms!
- What is it??
gravity

We are swimming in Dark Field

- There is quantum liquid filling our Universe
- It doesn't disturb gravity or electric force
- It does disturb weak force and make it shortranged
- It slows down all elementary particles from speed of light
- otherwise no atoms!
- What is it??

Cosmic

Superconductor

- In a superconductor, magnetic field gets repelled (Meißner effect), and penetrates only over the "penetration length"
\Rightarrow Magnetic field is short-ranged!
- Imagine a physicist living in a superconductor
- She finally figured:
- magnetic field must be long-ranged
- there must be a mysterious charge-two condensate in her "Universe"
- But doesn't know what the condensate is, nor why it condenses
- Doesn't have enough energy (gap) to break up Cooper pairs That's the stage where we are!

Standard Model 5

CERN Summer Student Programme July 23， 2009

Hitoshi Murayama（IPMU Tokyo \＆Berkeley）

spontaneous

2008 Nobel

 Nambu symmetry breaking- electron spins are magnets
- in many solids, they'd like to line up

spontaneous symmetry breaking

spontaneous symmetry breaking

- introduce spin zero doublet with $\mathrm{Y}=\mathrm{I} / 2 H=\binom{H^{+}}{H^{0}}$

spontaneous symmetry breaking

- introduce spin zero doublet with $\mathrm{Y}=\mathrm{I} / 2 H=\binom{H^{+}}{H^{0}}$
- $V=\lambda|H|^{4}-\mu^{2}|H|^{2}$

spontaneous symmetry breaking

- introduce spin zero doublet with $\mathrm{Y}=\mathrm{I} / 2 H=\binom{H^{+}}{H^{0}}$
- $V=\lambda|H|^{4}-\mu^{2}|H|^{2}$
- ground state:
$\langle H\rangle(\square$ [FABS $)$

spontaneous symmetry breaking

- introduce spin zero doublet with $\mathrm{Y}=\mathrm{I} / 2 H=\binom{H^{+}}{H^{0}}$
- $v=\lambda|H|^{4}-\mu^{2}|H|^{2}$
- ground state:

- picks one particular orientation in SU(2), one particular phase in $\mathrm{U}(\mathrm{I})$

spontaneous symmetry breaking

- introduce spin zero doublet with $\mathrm{Y}=\mathrm{I} / 2 H=\binom{H^{+}}{H^{0}}$
- $v=\lambda|H|^{4}-\mu^{2}|H|^{2}$
- ground state:
$\langle H\rangle$

- picks one particular orientation in SU(2), one particular phase in $\mathrm{U}(\mathrm{I})$
- but is symmetric under
 $I_{3}+Y=Q$, electromagnetism is unbroken!

Gap Excitation

- We know the energy scale of the problem: $G_{F} \approx(300 \mathrm{GeV})^{-2}$
- the gap excitation is called "Higgs boson"
- Current data combined with the Standard Model theory predict $m_{H}<163 \mathrm{GeV}(95 \% \mathrm{CL})$

Higgs at ATLAS

Robust discovery

Higgs at CMS

Robust discovery

$\mathrm{H}_{\mathrm{SM}} \rightarrow \gamma \gamma$ in $\mathrm{CMS} \mathrm{PbWO}_{4}$ calorimeter

Expected signal significance

ugly

ugly

- $v=\lambda|H|^{4}-\mu^{2}|H|^{2}$

ugly

- $V=\lambda|H|^{4}-\mu^{2}|H|^{2}$
- Why negative mass-squred?

ugly

- $V=\lambda|H|^{4}-\mu^{2}|H|^{2}$
- Why negative mass-squred?
- Why only one scalar in the SM?

ugly

- $V=\lambda|H|^{4}-\mu^{2}|H|^{2}$
- Why negative mass-squred?
- Why only one scalar in the SM?
- Hierarchy problem because of its quadratic divergence

ugly

- $v=\lambda|H|^{4}-\mu^{2}|H|^{2}$
- Why negative mass-squred?
- Why only one scalar in the SM?
- Hierarchy problem because of its quadratic divergence
- does not appear fundamental, i.e. GinzburgLandau vs BCS

Once upon a time,

there was a hierarchy problem...

- At the end of 19th century: a "crisis" about electron
- Like charges repel: hard to keep electric charge in a small pack
- Electron is point-like
- At least smaller than $10^{-17} \mathrm{~cm}$
- Need a lot of energy to keep it small!

$$
\Delta m_{e} c^{2} \sim \frac{e^{2}}{r_{e}} \sim \mathrm{GeV} \frac{10^{-17} \mathrm{~cm}}{r_{e}}
$$

- Correction $\Delta m_{e} c^{2}>m_{e} c^{2}$ for $r_{e}<10^{-13} \mathrm{~cm}$
- Breakdown of theory of electromagnetism

$$
\Rightarrow \text { Can't discuss physics below } 10^{-13} \mathrm{~cm}
$$

Anti-Matter Comes to Rescue by Doubling of \#Particles

- Electron creates a force to repel itself

- Vacuum bubble of matter anti-matter creation/annihilation
- Electron annihilates the positron in the bubble
\Rightarrow only 10% of mass even
for Planck-size $r_{e} \sim 10^{-33} \mathrm{~cm}$

Anti-Matter Comes to Rescue by Doubling of \#Particles

- Electron creates a force to repel itself
- Vacuum bubble of matter anti-matter creation/annihilation
- Electron annihilates the
 positron in the bubble
\Rightarrow only 10% of mass even
for Planck-size $r_{e} \sim 10^{-33} \mathrm{~cm}$

Anti-Matter Comes to Rescue by Doubling of \#Particles

- Electron creates a force to repel itself
- Vacuum bubble of matter anti-matter creation/annihilation
- Electron annihilates the positron in the bubble
\Rightarrow only 10% of mass even
for Planck-size $r_{e} \sim 10^{-33} \mathrm{~cm}$

Anti-Matter Comes to Rescue by Doubling of \#Particles

- Electron creates a force to repel itself
- Vacuum bubble of matter anti-matter creation/annihilation
- Electron annihilates the positron in the bubble
\Rightarrow only 10% of mass even
for Planck-size $r_{e} \sim 10^{-33} \mathrm{~cm}$

$\Delta m_{e} \sim m_{e} \frac{\alpha}{4 \pi} \log \left(m_{e} r_{e}\right)$

Higgs repels itself, too

- Just like electron

$$
\Delta m_{H}^{2} c^{4} \sim\left(\frac{\hbar c}{r_{H}}\right)^{2}
$$ repelling itself because c, its charge, Higgs boson also repels itself

- Requires a lot of energy to contain itself in its point-like size!
- Breakdown of theory of weak force
- Can't get started!

History repeats itself?

- Double \#particles again
\Rightarrow superpartners
- "Vacuum bubbles" of superpartners cancel the energy required to contain Higgs boson in itself

Standard Model made consistent with whatever physics at shorter distances

$$
\Delta m_{H}^{2} \sim \frac{\alpha}{4 \pi} m_{S U S Y}^{2} \log \left(m_{H} r_{H}\right)
$$

Opening the door

Opening the door

- Once the hierarchy problem solved, we can get started to discuss physics at shorter distances and earlier universe.
- It opens the door to the next level: Hope to answer big questions
- The solution to the hierarchy problem itself, e.g., SUSY, provides additional probe to physics at short distances

Opening the door

- Once the hierarchy problem solved, we can get started to discuss physics at shorter distances and earlier universe.
- It opens the door to the next level: Hope to answer big questions
- The solution to the hierarchy problem itself, e.g., SUSY, provides additional probe to physics at short distances

Lesson

- In general, we'd like to see physics that stabilizes the hierarchy between Fermi scale (0.3 TeV) and whatever the next highenergy scale is
- supersymmetry, large extra dimensions, warped extra dimensions, little Higgs, composite Higgs, etc etc

Flavor Physics

Helicity of Neutrinos*

M. Goldhaber, L. Grodzins, and A. W. Sunyar
 Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

A
COMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with $\mathrm{Eu}^{152 m}$, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, ${ }^{1} 0-$, we find that the neutrino is "left-handed," i.e., $\boldsymbol{\sigma}_{\nu} \cdot \hat{p}_{\nu}=-1$ (negative helicity).

CP

Helicity of Neutrinos*

M. Goldhaber, L. Grodzins, and A. W. Sunyar Brookhaven National Laboratory, Upton, New York (Received December 11, 1957)

- Famous experiment by Goldhaber, Grodzins, Sunyar
- Neutrinos are all left-handed

ACOMBINED analysis of circular polarization and resonant scattering of γ rays following orbital electron capture measures the helicity of the neutrino. We have carried out such a measurement with $\mathrm{Eu}^{152 m}$, which decays by orbital electron capture. If we assume the most plausible spin-parity assignment for this isomer compatible with its decay scheme, ${ }^{1} 0-$, we find that the neutrino is "left-handed," i.e., $\boldsymbol{\sigma}_{\nu} \cdot \hat{p}_{\nu}=-1$ (negative helicity).

- This of course violates parity
- What about CP?
- All anti-neutrinos are righthanded
- CP still appears still good!

neutral kaons

- K^{0} and its anti-particle actually mix!
- What is produced as K^{0} oscillates to its antiparticle and come back
- define CP eigenstates

$$
\begin{aligned}
& K_{S}=\frac{1}{\sqrt{2}}\left(K^{0}+\bar{K}^{0}\right) \\
& K_{L}=\frac{1}{\sqrt{2}}\left(K^{0}-\bar{K}^{0}\right)
\end{aligned}
$$

- Assuming CP invariance, K_{S} decays into $\pi T \pi$, K_{L} decays into $\Pi T T \pi$

CP fell, too

- Cronin, Fitch
- $\mathrm{K}_{\mathrm{S}} \rightarrow \pi \mathrm{T} \pi(\mathrm{CP}=+\mathrm{I})$
- $\mathrm{K}_{\mathrm{L}} \rightarrow \pi \pi \pi(\mathrm{CP}=-\mathrm{I})$
- But, $\mathrm{K}^{0} \rightarrow \pi T$ occurs with about once in thousand times! (Cronin, Fitch, I980 Nobel)
- With only one system, we couldn't figure this out

CP fell, too

- Cronin, Fitch
- $\mathrm{K}_{\mathrm{S}} \rightarrow \pi \mathrm{T} \pi(\mathrm{CP}=+\mathrm{I})$
- $\mathrm{K}_{\mathrm{L}} \rightarrow \pi \pi \pi(C P=-I)$

Brutus, you too?

- But, $\mathrm{K}^{0} \rightarrow \pi \pi$ occurs with about once in thousand times! (Cronin, Fitch, I980 Nobel)
- With only one system, we couldn't figure this out

T fell also in the end

- If CP is violated, CPT theorem says T must also be violated in such a way that CPT is conserved
- Can we see time-reversal violation?
- CPLEAR@CERN showed
$\frac{\Gamma\left(\bar{K}^{0} \rightarrow K^{0}\right)-\Gamma\left(K^{0} \rightarrow \bar{K}^{0}\right)}{\Gamma\left(\bar{K}^{0} \rightarrow K^{0}\right)+\Gamma\left(K^{0} \rightarrow \bar{K}^{0}\right)}=(6.6 \pm 1.3 \pm 1.0) \times 10^{-3}$
- microscopic arrow of time!

Kobayashi-Maskawa

Kobayashi-Maskawa

- In 1972 before J/ Ψ, they predicted three generations of quarks to explain origin of CP violation

Kobayashi-Maskawa

- In 1972 before J/ Ψ, they predicted three generations of quarks to explain origin of CP violation
- fundamental difference between two and three and above

Kobayashi-Maskawa

- In 1972 before J / Ψ, they predicted three generations of quarks to explain origin of CP violation
- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts

Kobayashi-Maskawa

- In 1972 before J/ Ψ, they predicted three generations of quarks to explain origin of CP violation
- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)

Kobayashi-Maskawa

- In 1972 before J / Ψ, they predicted three generations of quarks to explain origin of CP violation
- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)
- squashed if only 2 points

Kobayashi-Maskawa

- In I972 before J/ Ψ, they predicted three generations of quarks to explain origin of CP violation
- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)
- squashed if only 2 points

Kobayashi-Maskawa

- In 1972 before J / Ψ, they predicted three generations of quarks to explain origin of CP violation
- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)
- squashed if only 2 points

Kobayashi-Maskawa

- In 1972 before J / Ψ, they predicted three generations of quarks to explain origin of CP violation
- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)
- squashed if only 2 points

Kobayashi-Maskawa

- In 1972 before J / ψ, they predicted three generations of quarks to explain origin of CP violation
- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)
- squashed if only 2 points

Kobayashi-Maskawa

- In 1972 before J / ψ, they predicted three generations of quarks to explain origin of CP violation

- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)
- squashed if only 2 points

Kobayashi-Maskawa

- In 1972 before J / ψ, they predicted three generations of quarks to explain origin of CP violation

- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)
- squashed if only 2 points

Kobayashi-Maskawa

- In 1972 before J / ψ, they predicted three generations of quarks to explain origin of CP violation

- fundamental difference between two and three and above
- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)
- squashed if only 2 points

Kobayashi-Maskawa

- In 1972 before J / ψ, they predicted three generations of quarks to explain origin of CP violation

- fundamental difference between two and three and above

- form a polygon if ≥ 3 pts
- different from its reflection (anti-matter)
- squashed if only 2 points

the third generation!

- SLAC $\mathrm{e}^{+} \mathrm{e}^{-}$experiment has seen "anomalous e mu events" (1975)
- Martin Perl: I995 Nobel

bottom quark

- Leon Lederman led an experiment at Fermilab
- looked for $\mu^{+} \mu^{-}$in hadron collisions
- a resonance miscovered in 1976
- finally real Upsilon $\gamma \rightarrow \mu^{+} \mu^{-}$discovered as narrow as J/ $\Psi(1978)$
- bound states of bottom and anti-bottom

bottom

- Leon Lederman led an experiment at Fermilab
- looked for $\mu^{+} \mu^{-}$in hadron collisions
- a resonance miscovered in 1976
- finally real Upsilon $\gamma \rightarrow \mu^{+} \mu^{-}$discovered as narrow as J/ $\Psi(1978)$
- bound states of bottom and anti-bottom

And (the drum roll) the top quark!

- proton anti-proton collider Tevatron I995

Kobayashi-Maskawa

Kobayashi-Maskawa

- Mathematically, what is paired with the up quark is $d^{\prime}=d V_{u d}+s V_{u s}+b V_{u b}$. In general, the partners of u, c, t are

Kobayashi-Maskawa

- Mathematically, what is paired with the up quark is $d^{\prime}=d V_{u d}+s V_{u s}+b V_{u b}$. In general, the partners of u, c, t are $\left(\begin{array}{c}d^{\prime} \\ s^{\prime} \\ b^{\prime}\end{array}\right)=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)\left(\begin{array}{c}d \\ s \\ b\end{array}\right)$

Kobayashi-Maskawa

- Mathematically, what is paired with the up quark is $d^{\prime}=d V_{u d}+s V_{u s}+b V_{u b}$. In general, the partners of u, c, t are $\left(\begin{array}{c}d^{\prime} \\ s^{\prime} \\ b^{\prime}\end{array}\right)=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)\left(\begin{array}{c}d \\ s \\ b\end{array}\right)$
- 3×3 unitarity matrix has 9 parameters. But we can change the phases of six quark states arbitrarily, subtracting 6, 9-6=3 angles.

Kobayashi-Maskawa

- Mathematically, what is paired with the up quark is $d^{\prime}=d V_{u d}+s V_{u s}+b V_{u b}$. In general, the partners of u, c, t are $\left(\begin{array}{c}d^{\prime} \\ s^{\prime} \\ b^{\prime}\end{array}\right)=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)\left(\begin{array}{c}d \\ s \\ b\end{array}\right)$
- 3×3 unitarity matrix has 9 parameters. But we can change the phases of six quark states arbitrarily, subtracting 6, 9-6=3 angles.
- Careful! The overall phase doesn't help. 9-(6I) $=4=3$ angles + I phase

Kobayashi-Maskawa

- Mathematically, what is paired with the up quark is $d^{\prime}=d V_{u d}+s V_{u s}+b V_{u b}$. In general, the partners of u, c, t are $\left(\begin{array}{c}d^{\prime} \\ s^{\prime} \\ b^{\prime}\end{array}\right)=\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right)\left(\begin{array}{c}d \\ s \\ b\end{array}\right)$
- 3×3 unitarity matrix has 9 parameters. But we can change the phases of six quark states arbitrarily, subtracting 6, 9-6=3 angles.
- Careful! The overall phase doesn't help. 9-(61) $=4=3$ angles + I phase

Unitarity triangle

- Unitarity of the CKM matrix says

$$
\begin{gathered}
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \\
V_{u d} V_{u b}^{*} \underbrace{V_{t d} V_{t b}^{*}}_{V_{c d} V_{c b}^{*}} \\
V_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \\
\approx\left(\begin{array}{ccc}
0.97 & 0.22 & 0.004 e^{i \gamma} \\
-0.22 & 0.97 & 0.04 \\
0.008 & -0.04 & 1
\end{array}\right), \gamma \approx 60^{\circ}
\end{gathered}
$$

Exactly!

- BaBar and Belle 2002

The Standard Model

Three generations

Three forces

- Standard Model
- three generations of quarks and leptons
- electromagnetism, weak, and strong
- $\operatorname{SU}(3){ }_{C} \times \operatorname{SU}(2){ }_{L} \times \mathrm{U}(1) y$ PARTICLES

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

SU(3) C
$\mathrm{SU}(2)_{\mathrm{L}}$
$\mathrm{U}(\mathrm{I})_{\mathrm{Y}}$
spin
flavor
seen?

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

	Q
$S U(3) \mathrm{C}$	3
$\mathrm{SU}(2) \mathrm{L}$	2
$\mathrm{U}(1) \mathrm{Y}$	$+1 / 6$
spin	$-1 / 2$
flavor	3
seen?	Y

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

	Q	d
$S U(3) c$	3	3
$S U(2)_{L}$	2	I
$U(I) Y$	$+1 / 6$	$-1 / 3$
spin	$-1 / 2$	$+1 / 2$
flavor	3	3
seen?	Y	Y

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

	Q	d	u
$S U(3) \subset$	3	3	3
$S U(2) L$	2	I	I
$U(I)_{Y}$	$+1 / 6$	$-1 / 3$	$+2 / 3$
spin	$-1 / 2$	$+1 / 2+1 / 2$	
flavor	3	3	3
seen?	Y	Y	Y

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1)$ y gauge theory

	Q	d	u	L
$S U(3) c$	3	3	3	I
$S U(2)_{L}$	2	I	I	2
$U(I)_{Y}$	$+1 / 6$	$-1 / 3$	$+2 / 3$	$-1 / 2$
spin	$-1 / 2$	$+1 / 2$	$+1 / 2$	$-1 / 2$
flavor	3	3	3	3
seen?	Y	Y	Y	Y

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

	Q	d	u	L	e
$\mathrm{SU}(3) \mathrm{C}$	3	3	3	I	I
$\mathrm{SU}(2) \mathrm{L}$	2	I	I	2	I
$\mathrm{U}(\mathrm{I})_{Y}$	$+I / 6$	$-I / 3$	$+2 / 3$	$-I / 2$	$+I$
spin	$-I / 2$	$+I / 2$	$+I / 2$	$-I / 2$	$+I / 2$
flavor	3	3	3	3	3
seen?	Y	Y	Y	Y	Y

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

	Q	d	u	L	e	B
$\mathrm{SU}(3) \mathrm{C}$	3	3	3	I	I	I
$\mathrm{SU}(2) \mathrm{L}$	2	I	I	2	I	I
$\mathrm{U}(\mathrm{I})_{Y}$	$+I / 6$	$-I / 3$	$+2 / 3$	$-I / 2$	$+I$	0
spin	$-I / 2$	$+I / 2$	$+I / 2$	$-I / 2$	$+I / 2$	I
flavor	3	3	3	3	3	I
seen?	Y	Y	Y	Y	Y	Y

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

	Q	d	u	L	e	B	W
$S U(3) C$	3	3	3	I	I	I	I
$S U(2) L$	2	I	I	2	I	I	3
$U(I) Y$	$+I / 6$	$-I / 3$	$+2 / 3$	$-I / 2$	$+I$	0	0
spin	$-I / 2$	$+I / 2+I / 2$	$-I / 2$	$+I / 2$	I	I	
flavor	3	3	3	3	3	I	I
seen?	Y						

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

	Q	d	u	L	e	B	W	g
$S U(3) C$	3	3	3	I	I	I	I	8
$S U(2) L$	2	I	I	2	I	I	3	I
$U(I)_{Y}$	$+I / 6$	$-I / 3$	$+2 / 3$	$-I / 2$	$+I$	0	0	0
spin	$-I / 2$	$+I / 2$	$+I / 2$	$-I / 2$	$+I / 2$	I	I	I
flavor	3	3	3	3	3	I	I	I
seen?	Y							

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) $\operatorname{LxU}(1) y$ gauge theory

	Q	d	u	L	e	B	W	g	H
$S U(3) C$	3	3	3	I	I	I	I	8	I
$S U(2) L$	2	I	I	2	I	I	3	I	2
$U(I)_{Y}$	$+1 / 6$	$-I / 3$	$+2 / 3$	$-I / 2$	$+I$	0	0	0	$-I / 2$
spin	$-I / 2$	$+I / 2$	$+I / 2$	$-I / 2$	$+1 / 2$	I	I	I	0
flavor	3	3	3	3	3	I	I	I	I
seen?	Y	N							

Renormalizable

Quantum Field Theory

- SU(3)cxSU(2) LxU(I)y gauge theory

Gauge Anomaly

- Gauge symmetry crucial to keep quantum field theories (including the SM) under control
- Triangle diagrams:

may spoil the gauge invariance at quantum level \Rightarrow disaster
- Anomalies must all vanish for three gauge vertices (not for global currents, e.g. B, L)
- Sum up all standard model fermions and see if they indeed vanish

Anomaly Cancellation

- $\mathrm{U}(\mathrm{I})^{3} 3 \cdot 2\left(\frac{1}{6}\right)^{3}+3\left(-\frac{2}{3}\right)^{3}+3\left(\frac{1}{3}\right)^{3}+2\left(-\frac{1}{2}\right)^{3}+(1)^{3}=0$
- $\mathrm{U}(\mathrm{I})(\text { gravity })^{2} 3 \cdot 2\left(\frac{1}{6}\right)+3\left(-\frac{2}{3}\right)+3\left(\frac{1}{3}\right)+2\left(-\frac{1}{2}\right)+(1)=0$
- $\mathrm{U}(\mathrm{I})(\mathrm{SU}(2))^{2} 3 \cdot 2\left(\frac{1}{6}\right)+2\left(-\frac{1}{2}\right)=0$
- $\mathrm{U}(\mathrm{I})(\mathrm{SU}(3))^{2} 3 \cdot 2\left(\frac{1}{6}\right)+3\left(-\frac{2}{3}\right)+3\left(\frac{1}{3}\right)=0$
- $(\mathrm{SU}(3))^{3} \quad \# \underline{3}-\# \underline{3}^{*}=2-1-1=0$
- $(\mathrm{SU}(2))^{3},(\mathrm{SU}(3))^{2} \mathrm{SU}(2), \mathrm{SU}(3)(\mathrm{SU}(2))^{2} 0$
- $\operatorname{SU}(2) \quad \# \underline{2}=3+1=4=$ even

Non-trivial connection between q \& l

General

- The most general renormalizable Lagrangian with the given particle content

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4 g^{\prime 2}} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4 g^{2}} W_{\mu \nu}^{a} W^{a \mu \nu}-\frac{1}{4 g_{s}^{2}} G_{\mu \nu}^{a} G^{a \mu \nu} \\
& +\bar{Q}_{i} i \not D Q_{i}+\bar{u}_{i} i \not D u_{i}+\bar{d}_{i} i \not D d_{i}+\bar{L}_{i} i \not D L_{i}+\bar{e}_{i} i \not D e_{i} \\
& +Y_{u}^{i j} \bar{Q}_{i} u_{j} \tilde{H}+Y_{d}^{i j} \bar{Q}_{i} d_{j} H+Y_{l}^{i j} \bar{L}_{i} e_{j} H+\left|D_{\mu} H\right|^{2} \\
& -\lambda\left(H^{\dagger} H\right)^{2}+\lambda v^{2} H^{\dagger} H+\frac{\theta}{64 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{a} G_{\rho \sigma}^{a}
\end{aligned}
$$

Parameters

- 3 gauge coupling constants $+\theta_{\mathrm{QCD}}$
- 2 parameters in the Higgs potential (G_{F}, m_{H})

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{4 g^{\prime 2}} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4 g^{2}} W_{\mu \nu}^{a} W^{a \mu \nu}-\frac{1}{4 g_{s}^{2}} G_{\mu \nu}^{a} G^{a \mu \nu} \\
&+\bar{Q}_{i} i \not D Q_{i}+\bar{u}_{i} i \not D u_{i}+\bar{d}_{i} i \not D d_{i}+\bar{L}_{i} i \not D L_{i}+\bar{e}_{i} i \not D e_{i} \\
&+Y_{u}^{i j} \bar{Q}_{i} u_{j} H+Y_{d}^{i j} \bar{Q}_{i} d_{j} H+Y_{l}^{i j} \bar{L}_{i} e_{j} H+\left|D_{\mu} H\right|^{2} \\
&-\lambda\left(H^{\dagger} H\right)^{2}+\lambda v^{2} H^{\dagger} H+\frac{\theta}{64 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{a} G_{\rho \sigma}^{a} \\
& g^{\prime} \sim 0.36, g \sim 0.65, g S \sim 1.2 \\
& G F \sim(300 \mathrm{GeV})^{-2}, \text { m }_{H} \text { unknown, } \theta_{\mathrm{QCD}}<10^{-10}
\end{aligned}
$$

Parameters

- 3×3 complex $Y_{u}{ }^{i j}, Y_{d}{ }^{j j}, Y Y_{i j}^{j:} 54$ real params
- reparameterization $\operatorname{SU}(3)^{5} \times \mathrm{U}(\mathrm{I})=4 \mathrm{I}$

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4 g^{\prime 2}} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4 g^{2}} W_{\mu \nu}^{a} W^{a \mu \nu}-\frac{1}{4 g_{s}^{2}} G_{\mu \nu}^{a} G^{a \mu \nu} \\
& +\bar{Q}_{i} i \not D Q_{i}+\bar{u}_{i} i \not D u_{i}+\bar{d}_{i} i \not D d_{i}+\bar{L}_{i} i \not D L_{i}+\bar{e}_{i} i \not D e_{i} \\
& +Y_{u}^{i j} \bar{Q}_{i} u_{j} \tilde{H}+Y_{d}^{i j} \bar{Q}_{i} d_{j} H+Y_{l}^{i j} \bar{L}_{i} e_{j} H+\left|D_{\mu} H\right|^{2} \\
& -\lambda\left(H^{\dagger} H\right)^{2}+\lambda v^{2} H^{\dagger} H+\frac{\theta}{64 \pi^{2}} \epsilon^{\mu \nu \rho \sigma} G_{\mu \nu}^{a} G_{\rho \sigma}^{a} \\
& 54-4 \mathrm{I}=\mid 3=3_{\mathrm{u}}+3_{\mathrm{d}}+3 \mathrm{l}+(3+\mathrm{I}) \mathrm{CKM}
\end{aligned}
$$

Masses and Mixings

- Choose masses and mixings as observed

$$
V_{C K M} \simeq\left(\begin{array}{ccc}
1 & \lambda & A \lambda^{3}(\rho+i \eta) \\
-\lambda & 1 & A \lambda^{2} \\
-\lambda^{3}(1+\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right) \quad \begin{gathered}
\boldsymbol{\lambda} \approx 0.22 \\
\mathbf{A}, \rho, \eta \approx \mathrm{O}(\mathrm{I})
\end{gathered}
$$

neutrinos
$d \bullet \quad b$
$u \bullet \quad c \bullet$
t

$e \bullet \quad \mu \bullet \tau$
3
$\stackrel{3}{D}$
$<$

$$
\stackrel{\text { D }}{<} \quad \stackrel{\overline{\mathrm{D}}}{<}
$$

$\stackrel{3}{\infty}$
$\stackrel{Q}{8}$
$\stackrel{-1}{\infty}$

Incomplete

- Now we have experimental data that say the Standard Model is incomplete
- neutrino mass
- dark matter
- dark energy
- absence of anti-matter in the Universe
- apparently acausal density perturbation

Standard Model

- triumph of 20th century physics
- most successful physical theory ever
- describes three forces:
- electromagnetism
- strong
- weak
- but we see problems in the 2 I st century
- and it's weird!
- There must be something beyond the Standard Model
- Expect big discoveries!

ELEMENTARY PARTICLES

IPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

- What is the Universe made of?

IPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

- What is the Universe made of?
- How did it start?

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

- What is the Universe made of?
- How did it start?
- What is its fate?

iPMU MATHEMATICS OF THE UNIVERSE

Science

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?

iPMU MATHEMATICS OF THE UNIVERSE

Science

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?

iPMU MATHEMATICS OF THE UNIVERSE

Science

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?
- founded Oct I, 2007

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics

IPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English

IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese

iPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese
- \$14M/yr for 10 years

iPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese
- \$14M/yr for 10 years
- launched Oct I, 2007

iPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research
- ~50 now institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese
- \$14M/yr for 10 years
- launched Oct I, 2007

iPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese
- \$14M/yr for 10 years
- launched Oct I, 2007
- ~50 now
- excellent new faculty, young and dynamic!

iPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese
- \$14M/yr for 10 years
- launched Oct I, 2007
- ~50 now
- excellent new faculty, young and dynamic!
- will hire about 10 more faculty members, ~15 postdocs each year

iPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese
- \$14M/yr for 10 years
- launched Oct I, 2007
- ~50 now
- excellent new faculty, young and dynamic!
- will hire about 10 more faculty members, ~15 postdocs each year
- support visitors!

iPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese
- \$14M/yr for 10 years
- launched Oct I, 2007
- ~50 now
- excellent new faculty, young and dynamic!
- will hire about 10 more faculty members, ~ 15 postdocs each year
- support visitors!
- new building in 2009

iPMU

 INSTITUTE FOR THE PHYSICS AND

 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese
- \$14M/yr for 10 years
- launched Oct I, 2007
- ~50 now
- excellent new faculty, young and dynamic!
- will hire about 10 more faculty members, ~15 postdocs each year
- support visitors!
- new building in 2009
- intl guest house in 2009

iPMU

- New intl research institute in Japan
- astrophysics
- particle theory
- particle expt
- mathematics
- official language: English
- >30\% non-Japanese
- \$14M/yr for 10 years
- launched Oct I, 2007
- ~50 now
- excellent new faculty, young and dynamic!
- will hire about 10 more faculty members, ~15 postdocs each year
- support visitors!
- new building in 2009
- intl guest house in 2009
- workshops roughly every other month

東京大 学
 THE UNIVERSITY OF TOKYO
 How we look like

How we look like

How we look like

received $\$ 1.25 \mathrm{M}$ extra

Full－time Scientists

Full－time scientists paid by IPMU

Full－time Scientists

Full－time scientists paid by IPMU
 THE UNIVERSITY OF TOKYO

Full－time Scientists

Full－time scientists paid by IPMU

Full－time Scientists

Full－time scientists paid by IPMU

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

For the agency/public:

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

For the agency/public:

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

For the agency/public:

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?
translation for you:

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

For the agency/public:

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?
translation for you:
- nature of dark matter

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

For the agency/public:

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?
translation for you:
- nature of dark matter
- resolving space-like singularity

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

For the agency/public:

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?
translation for you:
- nature of dark matter
- resolving space-like singularity
- w of dark energy

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

For the agency/public:

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?
translation for you:
- nature of dark matter
- resolving space-like singularity
- w of dark energy
- string theory, unification, proton decay

iPMU
 INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Science

For the agency/public:

- What is the Universe made of?
- How did it start?
- What is its fate?
- What are its fundamental laws?
- Why do we exist?
translation for you:
- nature of dark matter
- resolving space-like singularity
- w of dark energy
- string theory, unification, proton decay
- origin of baryon
asymmetry

IPMU initiatives in expts/observations

- Vagins: let SuperK detect neutrinos from long past supernovae
- Kozlov: use KamLAND to see if $\mathrm{v}=\overline{\mathrm{v}}$?
- Suzuki/Nakahata/Martens:

XMASS to detect dark matter

- Aihara/Takada/Yoshida/

Spergel: leadership in
HyperSuprimeCam at
Subaru for weak lensing
survey

- also SDSS-III/BOSS

IPMU initiatives in

 expts/observations- Vagins: let SuperK detect neutrinos from long past supernovae
- Kozlov: use KamLAND to
 see if $\mathrm{v}=\overline{\mathrm{v}}$?
- Suzuki/Nakahata/Martens:

XMASS to detect dark matter

- Aihara/Takada/Yoshida/

Spergel: leadership in
HyperSuprimeCam at
Subaru for weak lensing
survey

- also SDSS-III/BOSS

IPMU initiatives in

 expts/observations- Vagins: let SuperK detect neutrinos from long past supernovae
- Kozlov: use KamLAND to see if $\mathrm{v}=\overline{\mathrm{v}}$?
- Suzuki/Nakahata/Martens:

XMASS to detect dark matter

- Aihara/Takada/Yoshida/

Spergel: leadership in
HyperSuprimeCam at
Subaru for weak lensing
survey

- also SDSS-III/BOSS

IPMU initiatives in

 expts/observations- Vagins: let SuperK detect neutrinos from long past supernovae
- Kozlov: use KamLAND to see if $\mathrm{v}=\overline{\mathrm{v}}$?
- Suzuki/Nakahata/Martens: XMASS to detect dark matter
- Aihara/Takada/Yoshida/ Spergel: leadership in HyperSuprimeCam at Subaru for weak lensing survey

IPMU initiatives in

 expts/observations- Vagins: let SuperK detect neutrinos from long past supernovae
- Kozlov: use KamLAND to see if $\mathrm{v}=\overline{\mathrm{v}}$?
- Suzuki/Nakahata/Martens: XMASS to detect dark matter
- Aihara/Takada/Yoshida/ Spergel: leadership in HyperSuprimeCam at Subaru for weak lensing survey
- also SDSS-III/BOSS

Winter 2009 occupancy $\sim 5900 \mathrm{~m}^{2}$

emphasis on large interaction area

emphasis on large interaction area

emphasis on large interaction area "like a European town square" ~ 400 m2 tables, chairs, , âckboards, Espresso machines.

http://ipmu.jp

[^0]: ${ }^{13}$ B. W. Sargent, Proc. Roy. Soc. (London) A139, 659 (1933).

