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Plan

• Today is mostly a review of things you 
already know with a few extra

• Quantum ElectroDynamics (QED)

• Strong interaction                             
(QCD = Quantum ChromoDynamics)

• Weak interaction (Electrowork Theory)

• Flavor physics
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Particle Physics
• What are things made of?
• Why do they stick together to build things 

around us?
• discipline to study the constituents and 

forces among them
• tear things down, see what make them up
• See how they interact with each other
• everything should be understood based on 

their fundamental constituents and forces
• We need it to understand the Universe
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• Is there an underlying 
simplicity behind vast 
phenomena in Nature?

• Einstein dreamed to 
come up with a unified 
description

• But he failed to unify 
electromagnetism and 
gravity (GR)

Einstein’s Dream
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• Unification of 
electromagnetic and 
weak forces

⇒ electroweak theory

• Long-term goal since ‘60s

• We are getting there!

• The main missing link: 
Dark Field=Higgs

HERA ep collider
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We are just about to achieve
another layer of unification
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• Fermi formulated the 
first theory of the weak 
force (1932)

• The required energy scale 
to study the problem 
known since then: ~TeV

• We are finally getting 
there with LHC!

Fermi’s dream era
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Periodic Table

So many flavors of atoms?

8A1A

2A

3B 4B 5B 6B 7B 8B 11B 12B

3A 4A 5A 6A 7A

element names in blue are liquids at room temperature
element names in red are gases at room temperature
element names in black are solids at room temperature

Periodic Table of the Elements

Los Alamos National Laboratory Chemistry Division
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13

deeper into the heart 
of the matter (literally)

My son on Halloween!Einstein?

increase resolution
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14

resolution=energy

• Quantum Mechanics: 
particle=wave

• higher energy 
= shorter wavelength
= better resolution

low energy

high energy
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Things around us

electron down up

muon
Who ordered that?

I.I. Rabi

atoms

down

up

quark
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Muons

Muons come from outer space.
About a thousand of them go through 

our body every minute like X-ray.
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Search for Hidden Chambers
in the Pyramids

The structure of the Second Pyramid of Giza
is determined by cosmic-ray absorption.

Luis W. Alvarez, Jared A. Anderson, F. El Bedwei,
James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid,

Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy,
Ali Hilmy Moussa, Mohammed-Sharkawi, Lauren Yazolino

The three pyramids 6f Giza are situ-
ated a few miles southwest of Cairo,
Egypt. The two largest pyramids stand
within a few hundred meters of each
other. They were originally of almost
exactly the same height (145 meters),
but the Great Pyramid of Cheops has
a slightly larger square base (230 meters
on a side) than the Second Pyramid of
Chephren (215.5 meters on a side). A
photograph of the pyramids at Giza
is shown as Fig. 1. Figure 2 shows the
elevation cross sections of the two
pyramids and indicates the contrast in
architectural design. The simplicity of
Chephren's pyramid, compared with
the elaborate structure of his father's
Great Pyramid, is explained by arche-
ologists in terms of a "period of ex-
perimentation," ending with the con-
struction of Cheops's pyramid (1). (The
complexity of the internal architecture
of the pyramids increased during the
Fourth Dynasty until the time of
Cheops and then gave way to quite
simple designs after his time.)
An alternative explanation for the

sudden decrease in internal complexity
from the Great Pyramid to the Second
Pyramid suggested itself to us: perhaps
Chephren's architects had been more
successful in hiding their upper cham-
bers than were Cheops's. The interior
of the Great Pyramid was reached by
the tunneling laborers of Caliph Ma-

The authors are affiliated with the Joint Pyra-
mid Project of the United Arab Republic and the
United States of America. They reside either in
Cairo, United Arab Republic, or in Berkeley,
California. The article is adapted from an ad-
dress presented by Luis W. Alvarez at the
Washington Meeting of the American Physical
Society, 30 April 1969.

832

mun in the 9th century A.D., almost
3400 y'ears after its construction. Of
our group only Ahmed Fakhry (author
of The Pyramids, professor emeritus of
archeology, University of Cairo, and
member of the Supreme Council of
Archeology, Cairo) was trained in ar-
cheology. As laymen, we thought it not
unlikely that unknown chambers might
still be present in the limestone above
the "Belzoni Chamber," which is near
the center of the base of Chephren's
Second Pyramid, and that these cham-
bers had survived undetected for 4500
years. [We learned later that such ideas
had occurred to early 19th-century in-
vestigators (2), who blasted holes in the
pyramids with gunpowder in attempts
to locate new chambers.]

In 1965 a proposal to probe the
Second Pyramid with cosmic rays (3)
was sent to a representative group of
cosmic-ray physicists and archeologists
with a request for comments concern-
ing its technical feasibility and archeo-
logical interest. The principal novelty
of the proposed cosmic-ray detectors
involved their ability to measure the
angles of arrival of penetrating cosmic-
ray muons with great precision, over a
large sensitive area. The properties of
the penetrating cosmic rays have been
sufficiently well known for 30 years to
suggest their use in a pyramid-probing
experiment, but it was not until the
invention of spark chambers with digi-
tal read-out features (4) that such a
use could be considered as a real pos-
sibility. [Cosmic-ray detectors with low
angular resolution had been used in
1955 to give an independent measure

of the thickness of rock overlying an
underground powerhouse in Australia's
Snowy Mountains Scheme (5)].
The favorable response to the pro-

posal led to the establishment by the
United Arab Republic and the United
States of America of the Joint U.A.R.-
U.S.A. Pyramid Project on 14 June
1966. Cosmic-ray detectors were in-
stalled in the Belzoni Chamber of the
Second Pyramid at Giza in the spring
of 1967 by physicists from the Ein
Shams University and the University
of California, in cooperation with ar-
cheologists from the U.A.R. Depart-
ment of Antiquities. Initial operation
had been scheduled for the middle of
June 1967, but for reasons beyond our
control the schedule was delayed for
several months. In early 1968 cosmic-
ray data began to be recorded on mag-
netic tape in our laboratory building,
a few hundred meters from the two
largest pyramids. Since that time we
have accumulated accurate angular
measurements on more than a million
cosmic-ray muons that have penetrated
an average of about 100 meters of
limestone on their way to the detectors
in the Belzoni Chamber.

Proof of the Method

Before any new technique is used
in an exploratory mode, it is essential
that the capabilities of the technique
be demonstrated on a known system.
We gave serious consideration to a
proposal that the cosmic-ray detectors
be tested first in the Queen's Chamber
of the Great Pyramid, to demonstrate
that the King's Chamber and the Grand
Gallery could be detected. But this
suggestion was abandoned because the
King's Chamber is so close to the
Queen's Chamber and because it sub-
tends such a large solid angle that ear-
lier (low resolution) cosmic-ray experi-
ments had already shown that the
upper chamber would give a large
signal. It was apparent that the only
untested feature of the new technique
involved the magnitude of the scatter-
ing of high energy muons in solid mat-
ter. (An anomalously large scattering
would nullify the high angular resolu-
tion that had been built into the de-
tectors, in the same way that frosted
glass destroys our ability to see distant
objects.) We had no reason to doubt
the calculated scattering, but we were
anxious to be able to demonstrate to
our colleagues in the U.A.R. Depart-

SCIENCE, VOL. 167

 o
n

 J
u

n
e

 5
, 

2
0

0
8

 
w

w
w

.s
c
ie

n
c
e

m
a

g
.o

rg
D

o
w

n
lo

a
d

e
d

 f
ro

m
 

Science 167,  832 (1970)

Thursday, July 23, 2009



Search for Hidden Chambers
in the Pyramids

The structure of the Second Pyramid of Giza
is determined by cosmic-ray absorption.

Luis W. Alvarez, Jared A. Anderson, F. El Bedwei,
James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid,

Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy,
Ali Hilmy Moussa, Mohammed-Sharkawi, Lauren Yazolino

The three pyramids 6f Giza are situ-
ated a few miles southwest of Cairo,
Egypt. The two largest pyramids stand
within a few hundred meters of each
other. They were originally of almost
exactly the same height (145 meters),
but the Great Pyramid of Cheops has
a slightly larger square base (230 meters
on a side) than the Second Pyramid of
Chephren (215.5 meters on a side). A
photograph of the pyramids at Giza
is shown as Fig. 1. Figure 2 shows the
elevation cross sections of the two
pyramids and indicates the contrast in
architectural design. The simplicity of
Chephren's pyramid, compared with
the elaborate structure of his father's
Great Pyramid, is explained by arche-
ologists in terms of a "period of ex-
perimentation," ending with the con-
struction of Cheops's pyramid (1). (The
complexity of the internal architecture
of the pyramids increased during the
Fourth Dynasty until the time of
Cheops and then gave way to quite
simple designs after his time.)
An alternative explanation for the

sudden decrease in internal complexity
from the Great Pyramid to the Second
Pyramid suggested itself to us: perhaps
Chephren's architects had been more
successful in hiding their upper cham-
bers than were Cheops's. The interior
of the Great Pyramid was reached by
the tunneling laborers of Caliph Ma-

The authors are affiliated with the Joint Pyra-
mid Project of the United Arab Republic and the
United States of America. They reside either in
Cairo, United Arab Republic, or in Berkeley,
California. The article is adapted from an ad-
dress presented by Luis W. Alvarez at the
Washington Meeting of the American Physical
Society, 30 April 1969.

832

mun in the 9th century A.D., almost
3400 y'ears after its construction. Of
our group only Ahmed Fakhry (author
of The Pyramids, professor emeritus of
archeology, University of Cairo, and
member of the Supreme Council of
Archeology, Cairo) was trained in ar-
cheology. As laymen, we thought it not
unlikely that unknown chambers might
still be present in the limestone above
the "Belzoni Chamber," which is near
the center of the base of Chephren's
Second Pyramid, and that these cham-
bers had survived undetected for 4500
years. [We learned later that such ideas
had occurred to early 19th-century in-
vestigators (2), who blasted holes in the
pyramids with gunpowder in attempts
to locate new chambers.]

In 1965 a proposal to probe the
Second Pyramid with cosmic rays (3)
was sent to a representative group of
cosmic-ray physicists and archeologists
with a request for comments concern-
ing its technical feasibility and archeo-
logical interest. The principal novelty
of the proposed cosmic-ray detectors
involved their ability to measure the
angles of arrival of penetrating cosmic-
ray muons with great precision, over a
large sensitive area. The properties of
the penetrating cosmic rays have been
sufficiently well known for 30 years to
suggest their use in a pyramid-probing
experiment, but it was not until the
invention of spark chambers with digi-
tal read-out features (4) that such a
use could be considered as a real pos-
sibility. [Cosmic-ray detectors with low
angular resolution had been used in
1955 to give an independent measure

of the thickness of rock overlying an
underground powerhouse in Australia's
Snowy Mountains Scheme (5)].
The favorable response to the pro-

posal led to the establishment by the
United Arab Republic and the United
States of America of the Joint U.A.R.-
U.S.A. Pyramid Project on 14 June
1966. Cosmic-ray detectors were in-
stalled in the Belzoni Chamber of the
Second Pyramid at Giza in the spring
of 1967 by physicists from the Ein
Shams University and the University
of California, in cooperation with ar-
cheologists from the U.A.R. Depart-
ment of Antiquities. Initial operation
had been scheduled for the middle of
June 1967, but for reasons beyond our
control the schedule was delayed for
several months. In early 1968 cosmic-
ray data began to be recorded on mag-
netic tape in our laboratory building,
a few hundred meters from the two
largest pyramids. Since that time we
have accumulated accurate angular
measurements on more than a million
cosmic-ray muons that have penetrated
an average of about 100 meters of
limestone on their way to the detectors
in the Belzoni Chamber.

Proof of the Method

Before any new technique is used
in an exploratory mode, it is essential
that the capabilities of the technique
be demonstrated on a known system.
We gave serious consideration to a
proposal that the cosmic-ray detectors
be tested first in the Queen's Chamber
of the Great Pyramid, to demonstrate
that the King's Chamber and the Grand
Gallery could be detected. But this
suggestion was abandoned because the
King's Chamber is so close to the
Queen's Chamber and because it sub-
tends such a large solid angle that ear-
lier (low resolution) cosmic-ray experi-
ments had already shown that the
upper chamber would give a large
signal. It was apparent that the only
untested feature of the new technique
involved the magnitude of the scatter-
ing of high energy muons in solid mat-
ter. (An anomalously large scattering
would nullify the high angular resolu-
tion that had been built into the de-
tectors, in the same way that frosted
glass destroys our ability to see distant
objects.) We had no reason to doubt
the calculated scattering, but we were
anxious to be able to demonstrate to
our colleagues in the U.A.R. Depart-
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Search for Hidden Chambers
in the Pyramids

The structure of the Second Pyramid of Giza
is determined by cosmic-ray absorption.

Luis W. Alvarez, Jared A. Anderson, F. El Bedwei,
James Burkhard, Ahmed Fakhry, Adib Girgis, Amr Goneid,

Fikhry Hassan, Dennis Iverson, Gerald Lynch, Zenab Miligy,
Ali Hilmy Moussa, Mohammed-Sharkawi, Lauren Yazolino

The three pyramids 6f Giza are situ-
ated a few miles southwest of Cairo,
Egypt. The two largest pyramids stand
within a few hundred meters of each
other. They were originally of almost
exactly the same height (145 meters),
but the Great Pyramid of Cheops has
a slightly larger square base (230 meters
on a side) than the Second Pyramid of
Chephren (215.5 meters on a side). A
photograph of the pyramids at Giza
is shown as Fig. 1. Figure 2 shows the
elevation cross sections of the two
pyramids and indicates the contrast in
architectural design. The simplicity of
Chephren's pyramid, compared with
the elaborate structure of his father's
Great Pyramid, is explained by arche-
ologists in terms of a "period of ex-
perimentation," ending with the con-
struction of Cheops's pyramid (1). (The
complexity of the internal architecture
of the pyramids increased during the
Fourth Dynasty until the time of
Cheops and then gave way to quite
simple designs after his time.)
An alternative explanation for the

sudden decrease in internal complexity
from the Great Pyramid to the Second
Pyramid suggested itself to us: perhaps
Chephren's architects had been more
successful in hiding their upper cham-
bers than were Cheops's. The interior
of the Great Pyramid was reached by
the tunneling laborers of Caliph Ma-

The authors are affiliated with the Joint Pyra-
mid Project of the United Arab Republic and the
United States of America. They reside either in
Cairo, United Arab Republic, or in Berkeley,
California. The article is adapted from an ad-
dress presented by Luis W. Alvarez at the
Washington Meeting of the American Physical
Society, 30 April 1969.

832

mun in the 9th century A.D., almost
3400 y'ears after its construction. Of
our group only Ahmed Fakhry (author
of The Pyramids, professor emeritus of
archeology, University of Cairo, and
member of the Supreme Council of
Archeology, Cairo) was trained in ar-
cheology. As laymen, we thought it not
unlikely that unknown chambers might
still be present in the limestone above
the "Belzoni Chamber," which is near
the center of the base of Chephren's
Second Pyramid, and that these cham-
bers had survived undetected for 4500
years. [We learned later that such ideas
had occurred to early 19th-century in-
vestigators (2), who blasted holes in the
pyramids with gunpowder in attempts
to locate new chambers.]

In 1965 a proposal to probe the
Second Pyramid with cosmic rays (3)
was sent to a representative group of
cosmic-ray physicists and archeologists
with a request for comments concern-
ing its technical feasibility and archeo-
logical interest. The principal novelty
of the proposed cosmic-ray detectors
involved their ability to measure the
angles of arrival of penetrating cosmic-
ray muons with great precision, over a
large sensitive area. The properties of
the penetrating cosmic rays have been
sufficiently well known for 30 years to
suggest their use in a pyramid-probing
experiment, but it was not until the
invention of spark chambers with digi-
tal read-out features (4) that such a
use could be considered as a real pos-
sibility. [Cosmic-ray detectors with low
angular resolution had been used in
1955 to give an independent measure

of the thickness of rock overlying an
underground powerhouse in Australia's
Snowy Mountains Scheme (5)].
The favorable response to the pro-

posal led to the establishment by the
United Arab Republic and the United
States of America of the Joint U.A.R.-
U.S.A. Pyramid Project on 14 June
1966. Cosmic-ray detectors were in-
stalled in the Belzoni Chamber of the
Second Pyramid at Giza in the spring
of 1967 by physicists from the Ein
Shams University and the University
of California, in cooperation with ar-
cheologists from the U.A.R. Depart-
ment of Antiquities. Initial operation
had been scheduled for the middle of
June 1967, but for reasons beyond our
control the schedule was delayed for
several months. In early 1968 cosmic-
ray data began to be recorded on mag-
netic tape in our laboratory building,
a few hundred meters from the two
largest pyramids. Since that time we
have accumulated accurate angular
measurements on more than a million
cosmic-ray muons that have penetrated
an average of about 100 meters of
limestone on their way to the detectors
in the Belzoni Chamber.

Proof of the Method

Before any new technique is used
in an exploratory mode, it is essential
that the capabilities of the technique
be demonstrated on a known system.
We gave serious consideration to a
proposal that the cosmic-ray detectors
be tested first in the Queen's Chamber
of the Great Pyramid, to demonstrate
that the King's Chamber and the Grand
Gallery could be detected. But this
suggestion was abandoned because the
King's Chamber is so close to the
Queen's Chamber and because it sub-
tends such a large solid angle that ear-
lier (low resolution) cosmic-ray experi-
ments had already shown that the
upper chamber would give a large
signal. It was apparent that the only
untested feature of the new technique
involved the magnitude of the scatter-
ing of high energy muons in solid mat-
ter. (An anomalously large scattering
would nullify the high angular resolu-
tion that had been built into the de-
tectors, in the same way that frosted
glass destroys our ability to see distant
objects.) We had no reason to doubt
the calculated scattering, but we were
anxious to be able to demonstrate to
our colleagues in the U.A.R. Depart-
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Egypt. The two largest pyramids stand
within a few hundred meters of each
other. They were originally of almost
exactly the same height (145 meters),
but the Great Pyramid of Cheops has
a slightly larger square base (230 meters
on a side) than the Second Pyramid of
Chephren (215.5 meters on a side). A
photograph of the pyramids at Giza
is shown as Fig. 1. Figure 2 shows the
elevation cross sections of the two
pyramids and indicates the contrast in
architectural design. The simplicity of
Chephren's pyramid, compared with
the elaborate structure of his father's
Great Pyramid, is explained by arche-
ologists in terms of a "period of ex-
perimentation," ending with the con-
struction of Cheops's pyramid (1). (The
complexity of the internal architecture
of the pyramids increased during the
Fourth Dynasty until the time of
Cheops and then gave way to quite
simple designs after his time.)
An alternative explanation for the

sudden decrease in internal complexity
from the Great Pyramid to the Second
Pyramid suggested itself to us: perhaps
Chephren's architects had been more
successful in hiding their upper cham-
bers than were Cheops's. The interior
of the Great Pyramid was reached by
the tunneling laborers of Caliph Ma-
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mun in the 9th century A.D., almost
3400 y'ears after its construction. Of
our group only Ahmed Fakhry (author
of The Pyramids, professor emeritus of
archeology, University of Cairo, and
member of the Supreme Council of
Archeology, Cairo) was trained in ar-
cheology. As laymen, we thought it not
unlikely that unknown chambers might
still be present in the limestone above
the "Belzoni Chamber," which is near
the center of the base of Chephren's
Second Pyramid, and that these cham-
bers had survived undetected for 4500
years. [We learned later that such ideas
had occurred to early 19th-century in-
vestigators (2), who blasted holes in the
pyramids with gunpowder in attempts
to locate new chambers.]

In 1965 a proposal to probe the
Second Pyramid with cosmic rays (3)
was sent to a representative group of
cosmic-ray physicists and archeologists
with a request for comments concern-
ing its technical feasibility and archeo-
logical interest. The principal novelty
of the proposed cosmic-ray detectors
involved their ability to measure the
angles of arrival of penetrating cosmic-
ray muons with great precision, over a
large sensitive area. The properties of
the penetrating cosmic rays have been
sufficiently well known for 30 years to
suggest their use in a pyramid-probing
experiment, but it was not until the
invention of spark chambers with digi-
tal read-out features (4) that such a
use could be considered as a real pos-
sibility. [Cosmic-ray detectors with low
angular resolution had been used in
1955 to give an independent measure

of the thickness of rock overlying an
underground powerhouse in Australia's
Snowy Mountains Scheme (5)].
The favorable response to the pro-

posal led to the establishment by the
United Arab Republic and the United
States of America of the Joint U.A.R.-
U.S.A. Pyramid Project on 14 June
1966. Cosmic-ray detectors were in-
stalled in the Belzoni Chamber of the
Second Pyramid at Giza in the spring
of 1967 by physicists from the Ein
Shams University and the University
of California, in cooperation with ar-
cheologists from the U.A.R. Depart-
ment of Antiquities. Initial operation
had been scheduled for the middle of
June 1967, but for reasons beyond our
control the schedule was delayed for
several months. In early 1968 cosmic-
ray data began to be recorded on mag-
netic tape in our laboratory building,
a few hundred meters from the two
largest pyramids. Since that time we
have accumulated accurate angular
measurements on more than a million
cosmic-ray muons that have penetrated
an average of about 100 meters of
limestone on their way to the detectors
in the Belzoni Chamber.

Proof of the Method

Before any new technique is used
in an exploratory mode, it is essential
that the capabilities of the technique
be demonstrated on a known system.
We gave serious consideration to a
proposal that the cosmic-ray detectors
be tested first in the Queen's Chamber
of the Great Pyramid, to demonstrate
that the King's Chamber and the Grand
Gallery could be detected. But this
suggestion was abandoned because the
King's Chamber is so close to the
Queen's Chamber and because it sub-
tends such a large solid angle that ear-
lier (low resolution) cosmic-ray experi-
ments had already shown that the
upper chamber would give a large
signal. It was apparent that the only
untested feature of the new technique
involved the magnitude of the scatter-
ing of high energy muons in solid mat-
ter. (An anomalously large scattering
would nullify the high angular resolu-
tion that had been built into the de-
tectors, in the same way that frosted
glass destroys our ability to see distant
objects.) We had no reason to doubt
the calculated scattering, but we were
anxious to be able to demonstrate to
our colleagues in the U.A.R. Depart-
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on a side) than the Second Pyramid of
Chephren (215.5 meters on a side). A
photograph of the pyramids at Giza
is shown as Fig. 1. Figure 2 shows the
elevation cross sections of the two
pyramids and indicates the contrast in
architectural design. The simplicity of
Chephren's pyramid, compared with
the elaborate structure of his father's
Great Pyramid, is explained by arche-
ologists in terms of a "period of ex-
perimentation," ending with the con-
struction of Cheops's pyramid (1). (The
complexity of the internal architecture
of the pyramids increased during the
Fourth Dynasty until the time of
Cheops and then gave way to quite
simple designs after his time.)
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from the Great Pyramid to the Second
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of the Great Pyramid was reached by
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mun in the 9th century A.D., almost
3400 y'ears after its construction. Of
our group only Ahmed Fakhry (author
of The Pyramids, professor emeritus of
archeology, University of Cairo, and
member of the Supreme Council of
Archeology, Cairo) was trained in ar-
cheology. As laymen, we thought it not
unlikely that unknown chambers might
still be present in the limestone above
the "Belzoni Chamber," which is near
the center of the base of Chephren's
Second Pyramid, and that these cham-
bers had survived undetected for 4500
years. [We learned later that such ideas
had occurred to early 19th-century in-
vestigators (2), who blasted holes in the
pyramids with gunpowder in attempts
to locate new chambers.]

In 1965 a proposal to probe the
Second Pyramid with cosmic rays (3)
was sent to a representative group of
cosmic-ray physicists and archeologists
with a request for comments concern-
ing its technical feasibility and archeo-
logical interest. The principal novelty
of the proposed cosmic-ray detectors
involved their ability to measure the
angles of arrival of penetrating cosmic-
ray muons with great precision, over a
large sensitive area. The properties of
the penetrating cosmic rays have been
sufficiently well known for 30 years to
suggest their use in a pyramid-probing
experiment, but it was not until the
invention of spark chambers with digi-
tal read-out features (4) that such a
use could be considered as a real pos-
sibility. [Cosmic-ray detectors with low
angular resolution had been used in
1955 to give an independent measure

of the thickness of rock overlying an
underground powerhouse in Australia's
Snowy Mountains Scheme (5)].
The favorable response to the pro-

posal led to the establishment by the
United Arab Republic and the United
States of America of the Joint U.A.R.-
U.S.A. Pyramid Project on 14 June
1966. Cosmic-ray detectors were in-
stalled in the Belzoni Chamber of the
Second Pyramid at Giza in the spring
of 1967 by physicists from the Ein
Shams University and the University
of California, in cooperation with ar-
cheologists from the U.A.R. Depart-
ment of Antiquities. Initial operation
had been scheduled for the middle of
June 1967, but for reasons beyond our
control the schedule was delayed for
several months. In early 1968 cosmic-
ray data began to be recorded on mag-
netic tape in our laboratory building,
a few hundred meters from the two
largest pyramids. Since that time we
have accumulated accurate angular
measurements on more than a million
cosmic-ray muons that have penetrated
an average of about 100 meters of
limestone on their way to the detectors
in the Belzoni Chamber.

Proof of the Method

Before any new technique is used
in an exploratory mode, it is essential
that the capabilities of the technique
be demonstrated on a known system.
We gave serious consideration to a
proposal that the cosmic-ray detectors
be tested first in the Queen's Chamber
of the Great Pyramid, to demonstrate
that the King's Chamber and the Grand
Gallery could be detected. But this
suggestion was abandoned because the
King's Chamber is so close to the
Queen's Chamber and because it sub-
tends such a large solid angle that ear-
lier (low resolution) cosmic-ray experi-
ments had already shown that the
upper chamber would give a large
signal. It was apparent that the only
untested feature of the new technique
involved the magnitude of the scatter-
ing of high energy muons in solid mat-
ter. (An anomalously large scattering
would nullify the high angular resolu-
tion that had been built into the de-
tectors, in the same way that frosted
glass destroys our ability to see distant
objects.) We had no reason to doubt
the calculated scattering, but we were
anxious to be able to demonstrate to
our colleagues in the U.A.R. Depart-
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Monitor a volcano

• See through a volcano 
using muons

• University of  Tokyo 
group demonstrated 
that one can monitor 
movement of magma 
insider a volcano in a 
southern island

• can predict eruption!
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It’s A Small World?

electron down up

muon

All you need
to build atoms
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Standard Model
• triumph of 20th century physics
• most successful physical 

theory ever
• describes three forces: 

• electromagnetism
• strong
• weak

• Particle Data Group complies 
more than 24,000 
measurements from more 
than 7,000 papers, all agree 
with the SM except for a few

• but we see problems in the 
21st century
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Some Basic Concepts
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two pillars

• Two pillars in 20th century physics
• relativity (Einstein)
• quantum mechanics (Bohr, Heisenberg, 

Schrödinger, Pauli, Dirac, .....)
• Only way to combine them together is 

Quantum Field Theory
• very different way to describe nature from 

most people are used to
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Conservation of Energy

• kinetic energy
• potential energy
• thermal energy
• chemical energy
• nuclear energy
• they can all transform from one to another
• but the grand total does not change
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Conservation of Energy

• kinetic energy
• potential energy
• thermal energy
• chemical energy
• nuclear energy
• they can all transform from one to another
• but the grand total does not change

chemical energy in the body ⇒ potential energy of the train
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Special Relativity

• light speed is the speed limit
• the faster you move, time goes more 

slowly, things look shorter, and you feel 
heavier

• c=3.00×108 m/s is a natural constant, the 
same no matter how you move

• we can measure distance with time
• 1m=3.3nsec
• light year≈1016m
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E=mc2

“It followed from the special theory of 
relativity that mass and energy are both 
but different manifestations of the same 
thing -- a somewhat unfamiliar 
conception for the average mind. 
Furthermore, the equation E is equal to m 
c-squared, in which energy is put equal to 
mass, multiplied by the square of the 
velocity of light, showed that very small 
amounts of mass may be converted into a 
very large amount of energy and vice 
versa. The mass and energy were in fact 
equivalent, according to the formula 
mentioned before. This was 
demonstrated by Cockcroft and Walton in 
1932, experimentally.”
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First Accelerator
• Cockroft and Walton split the 

atoms for the first time (1932)
p+7Li→4He+4He
Modern alchemy!

• p weighs 1.0078u
•7Li weighs 7.0160u
•4He weighs 4.0026u

1.0078u+7.0160u
−2×4.0026u=0.0186u

• two helium atoms flew apart 
with lots of kinetic energy

• mass turns into energy!

1951 Nobel Prize in Physics
Thursday, July 23, 2009
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1933
first humanmade anti-matter
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1933
first humanmade anti-matter

e−
electron

e+
positron

γ
photon

Irène

Frédéric 
Joliot-
Curie
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Berkeley
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1955
discovery of
anti-proton

Berkeley
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1955
discovery of
anti-proton

Berkeley

Emilio
Segrè

Owen
Chamberlain
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The Sun gets
5 billion kg

lighter every second
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proton
4He

2e+

2
e

The Sun gets
5 billion kg

lighter every second
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• trillions of neutrinos go 
through our body every 
second
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Final proof
• trillions of neutrinos go 

through our body every 
second
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Final proof

SuperKamiokande

taken 1000m underground
in pitch darkness

• trillions of neutrinos go 
through our body every 
second
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taken 1000m underground
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THE INVISIBLES
ν
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Quantum Mechanics

• particle is wave, wave is particle
• Heisenberg uncertainty principle:   
ΔxΔp≥ℏ/2

• ℏ=6.63×10–34 J s is a natural constant

• ℏc=0.197 GeV fm is a useful combination
• can measure distance with energy
• 1fm=10–13cm=5.0GeV–1

=
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Copenhagen 
interpretation

• In quantum mechanics, one can only talk 
about probability

• We cannot predict with certainty what 
should happen

• Only after repeating the same experiment 
many times, we can test the prediction

• Einstein: God doesn’t play dice.
• Apparently He does.
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electron is a wave

Akira Tonomura
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electron is a wave

Akira Tonomura
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spin and statistics

• particles spin eternally like a top
• spin angular momentum                    

s=(half-integer)×ℏ
• s=1/2 for electrons, follows Fermi statistics 

(exclusion principle)
• s=1 for photons, follows Bose statistics
• Quantum Field Theory predicts that all 

particles with integer spins are bosons, 
those with half-odd spins are fermions
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Lifetime
• Most particles have a 

finite lifetime, decay into 
other ligher particles

• 1/τ is the probability of 
decay in unit time

• dn/dt = −n/τ
• n(t)=n(0)e−t/τ

• time-energy uncertainty 
principle ΔE Δt≈ℏ

• Γ=ℏ/τ is the width of 

energy (mass)
• stronger the force, 

shorter the lifetime
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Lifetime
• Most particles have a 

finite lifetime, decay into 
other ligher particles

• 1/τ is the probability of 
decay in unit time

• dn/dt = −n/τ
• n(t)=n(0)e−t/τ

• time-energy uncertainty 
principle ΔE Δt≈ℏ

• Γ=ℏ/τ is the width of 

energy (mass)
• stronger the force, 

shorter the lifetime
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conservation of
matter particle number
• As far as we know, particle number is 

conserved
• particle number = #matter - #anti-matter
• photon→electron+positron: γ→e+e−

• neutron→proton+electron+anti-neutrino 
n→p e− νe

• nuclear reaction in the Sun p p→d e+ νe 
(d=[pn])

• Many believe it should be violated, so that 
we could survive the Big Bang!

_
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CPT
• Another important prediction of Quantum 

Field Theory
• Doing all three operations should leave 

physics unchanged:
• charge conjugation C
• parity P
• time reversal T

• predicts that particle and anti-particle have
• same mass
• same lifetime

• weak force violates all C, T, P, but not CPT
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parity: P
• space inversion x→−x, p→−p, J→+J, t→+t, 

E→−E, B→+B

• inverts force: F→−F
• mirror=same law of physics
• F=ma → −F=m(−a)

• quantum state: ψ→±ψ
• classify even and odd states
• photon (electric field) is odd
• matter particles are even
• anti-matter particles are odd
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charge conjugation: C

• particles and anti-particles are mirrors
• both of them fall the same way
• interchange particles and anti-particles, and 

flip the sign of E & B fields: nothing changes 
with electromagnetism

• photon is odd under C
• It looks like the distinction between matter 

and anti-matter is just a convention
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time reversal: T

• can’t reverse time, but we can discuss if we 
can reverse the motion exactly

• basically play the video backwards
• t→−t、p→−p、J→−J、x→+x、F→+F

• F=ma → F=ma
• It is an anti-unitarity transformation in 

quantum mechanics
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possible in principle
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scattering experiments

• How do we probe microscopic world we 
can’t see even with the best microscope?

• Uncertainty principle: ΔxΔp≥ℏ/2
• If we shoot a particle with a big 

momentum, and if gets bounced, Δp is big, 
and we can see small distances Δx

pi

pf

Δp=pi−pf
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cross section
• scattering experiment
• You can’t control your projectile precisely 

enough to make sure it hits the target

• probability is   　　　　　　　　　　
(size of the target) / (size of the beam)

• (size of the target) is called cross section
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Early Universe and
elementary particle

• Early Universe: high temperature T
• high energy: E=kT
• large momentum: p=E/c=kT/c
• small distance: x=ℏ/p=ℏc/kT

• elementary particles or physics at short 
distances are very important in the early 
Universe!
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Quantum Electro 
Dynamics (QED)
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Maxwell

• electricity and magnetism unified

• predicts electromagnetic wave=light

• it is photon in QED

• all electromagnetic phenomena are 
described in term of exchange of photons

e–

e–

γ
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Rutherford experiment

• bombard gold foil with alphas
• When I fired a bullet at a 

Kleenex tissue, the bullet came 
back!

• shows electric charge is 
concentrated at the center of 
a gold atom

• but when alpha gets too 
close, it shows deviation from 
theory

• nucleus ~ 10-12cm
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Rutherford scattering

• Classically, you solve the 
equation of motion of 
the alpha particle for a 
fixed p, with varying 
impact parameter b

• The differential cross 
section is 
dσ

d cos θ
∝ 1

sin4 θ/2

b
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Virtual photon

• Coulomb potential around a charged 
particle is a cloud of virtual photons

• the charge is emitting a virtual photon all 
the time, costing the energy of ΔE= c p

• the smaller the momentum, it costs less 
energy and can survive longer Δt≈ℏ/c p, 

and can go further Δx≈cΔt≈ℏ/p, basically 

one wavelength away from the source
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Quantum Description
• The nucleus is emitting a 

virtual photon all the time
• One with large λ (small 

q=h/λ) does not cost much 
ΔE and goes far

• One with small λ (large 
q=h/λ) costs much ΔE and 
does not go far

• photon momentum kicks 
the alpha

• photon propagator goes as 
1/q2∝1/(1-cos θ)

• The cross section goes as 
1/(1-cos θ)2=1/sin4 (θ/2) !

q2 = −!q2 = −|!p− !p′|2

= −2|!p|2(1− cos θ)

q
p p’
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Feynman diagram

• exchange virtual particles for scattering

• anti-particles are particles going backward 
in time

• all you need to know about the 
electromagnetism is this vertex costing e

• diagrams with more vertices: higher order 
in α=e2/4π=1/137 e–

e–

γ

e
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Useful formula
• e+e–→μ+μ–

• cross section is

e–

e+
γ

μ+

μ–

σ =
4πα2

3s
=

86.8 fb
s/TeV2

e e
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electron magnetic 
moment

• g=2 is the prediction by Dirac
• in QED, there are higher order corrections
• O(α): 1 diagram
• O(α2): 7 diagrams
• O(α3): 72 diagrams
• O(α4): 891 diagrams
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8th order O(α4)

• 891 diagrams computed numerically using a 
supercomputer

M01 M02 M03 M04 M05 M06 M07

M08 M09 M10 M11 M12 M13 M14

M15 M16 M17 M18 M19 M20 M21

M22 M23 M24 M25 M26 M27 M28

M29 M30 M31 M32 M33 M34 M35

M36 M37 M38 M39 M40 M41 M42

M43 M44 M45 M46 M47

FIG. 1: Eighth-order Group V diagrams represented by 47 self-energy-like diagrams M01–M47.

the relation derived from Ward-Takahashi identity and the time-reversal symmetry. Thus

far, there is only one complete evaluation of the eighth-order term, which was performed

by numerical means [16]. Some of these diagrams have linear IR divergence, which was

treated by an ad hoc subtraction method. In contrast gencodeN is capable of dealing with

such hard IR divergence in a systematic fashion [15]. The application of gencodeN to the

calculation of the eighth-order q-type diagrams provides us the opportunity not only to test

if it works properly, but also to check the previous result.

Even in the eighth-order case gencodeN creates FORTRAN programs very rapidly. The

entire 47 program sets are generated in less than ten minutes on hp’s Alpha. The numerical

evaluation is, however, quite non-trivial and requires a huge computational resource. For

the preliminary evaluation we have used 64 to 256 Xeon CPU’s per diagram and run the

programs over a few months. To our surprise it uncovered an inconsistency in the treatment

of IR subtraction terms in the old calculation. In Secs. III and IV we describe how this

inconsistency was uncovered by a detailed comparison of the old code and the code generated

by gencodeN.

13
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The answer

1
2
g = 1 + A2

α

π
+ A4

(α

π

)2
+ A6

(α

π

)3
+ A8

(α

π

)4
+ · · ·

A2 =
1
2

A4 =
197
144

+
(

1
2
− 3 ln 2

)
ζ(2) +

3
4
ζ(3) = −0.328 478 965 579 . . .

A6 =
83
72

π2ζ(3)− 215
24

ζ(5)− 239
2160

π4 +
139
18

ζ(3)− 298
9

π2 ln 2

+
17101
810

π2 +
28259
5184

+
100
3

[(
Li4

(
1
2

)
+

1
24

ln4 2
)
− 1

24
π2 ln2 2

]

= 1.181 241 456 587 . . .

A8 = −1.914 4 (35)
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The data

• 2008 measurement by Harvard group
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• ge/2 = 1.001 159 652 180.73 (0.28) 

[0.24ppb]
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The data

• 2008 measurement by Harvard group
• ge/2 = 1.001 159 652 180.73 (0.28) 

[0.24ppb]
• the theoretical value is                                  

ge/2 = 1.001 159 652 182.79 (0.10)(0.31)
(7.71)

• The biggest error is that we don’t know α 
well enough
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hot topic: muon g–2
• muon is basically the 

same as electron, but 
heavier

• important contribution 
from hadrons

• Calculated based on data 
in e+e- colliders
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hadrons
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Strong Interaction
Quantum 

ChromoDynamics
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Baryon Number
• In 1932 Anderson 

discovered positron 
using cloud chamber 
exposed to cosmic rays

• Why don’t we see     
p→e++γ?

• Stückelberg made up a 
new conservation law: 
#baryon=#p+#n

• “baryon” means heavy, at 
that stage p and n

• “lepton” means light, at 
that stage e+ and e–

Now, best limit is τ(p→e++π0)>8.2×1033 years (SuperK)
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Basic properties of 
nuclei

• Z protons and (A–Z) neutrons
• B≈16MeV × A
• R≈1.12fm × A1/3

• cf. Coulomb energy≈0.7MeV × Z2/A1/3

• something is keeping the nuclei from falling 
apart due to Coulomb repulsion among p’s

• 1fm is the range of the force, not much 
beyond the size of nucleons.  Basically 
nucleons shoulder-to-shoulder
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Yukawa theory
• assume the force carrier 

particle has a finite mass m
• It costs a minimum energy 
ΔE>mc2 to emit the virtual 
massive particle

• We need to give it back 
within Δt≈ℏ/ΔE

• It cannot go beyond   
cΔt≈ℏc/ΔE<ℏc/mc2

• the range of the force is then 
ℏ/mc

• assuming this is 2fm, we need 
m≈100MeV/c2

• the mass is somewhere 
between “lepton” (electron) 
and “baryon” (nucleon) and 
was called “meson”
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The Andes
• It was confusing when 

muon was discovered at 
the mass range, but does 
not do strong interaction

• Maybe there is one more?
• look for more mesons on 

top of the Andes
• there was!
• cosmic rays interact 

at15-20km alititude
• p+A→π++X, π+→μ+X
• τ(π+)=0.026μsec

• τ(μ+)=2.2μsec

• then muons reach the 
surface thanks to time 
dilation

• but on high mountains 
pions are still “alive”
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The Andes
• It was confusing when 

muon was discovered at 
the mass range, but does 
not do strong interaction

• Maybe there is one more?
• look for more mesons on 

top of the Andes
• there was!
• cosmic rays interact 

at15-20km alititude
• p+A→π++X, π+→μ+X
• τ(π+)=0.026μsec

• τ(μ+)=2.2μsec

• then muons reach the 
surface thanks to time 
dilation

• but on high mountains 
pions are still “alive”

c τ(μ+)=660m << 10km!
c τ(π+)=7.8m
γβ>1000

E (π+)=γ m (π+)>100 GeV!
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hadrons

• But this was just the 
beginning

• soon many many 
particles discovered that 
participate in the strong 
interaction

• baryons and mesons
• A big mess!
• collectively called 

hadrons (thick particles)
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resonance

• πp scattering expt
• cross section goes very 

big at a particular energy
• resonance: new particle 
πp→Δ→πp

• the width of the 
resonance ΔE is ℏ/τ

• VERY short-lived 
τ~10-23sec!

πp scattering
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http://pdg.lbl.gov/xsect/contents.html (Courtesy of the COMPAS Group, IHEP, Protvino, August 2005.)

8

πp scattering
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V-particles
• produced in pairs K+ or 
Σ+

• somehow “long-lived” 
τ~10-10sec

• Nishijima, Gell-Mann
• produced in pairs by 

strong interaction 
because they carry a 
new quantum number 
+1 and –1

• hence can’t decay by 
strong interaction

• “strangeness”
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Deep Inelastic 
Scattering (DIS)

Murray Gell-Mann
1969 Nobel
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Deep Inelastic 
Scattering (DIS)

• e p scattering
• scoffed at because 

electron does not do 
strong interaction

• turned out brilliant 
because of well-defined 
roles
e=probe
p=probed

• found partons inside 
proton, quarks?

• 1990 Nobel Prize:
Friedman, Kendall, Taylor

Murray Gell-Mann
1969 Nobel
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puzzles about quarks
• We need

• up u(+2/3 e)

• down d(-1/3 e)

• strange s(-1/3 e)

• proton is (uud)

• neutron is n(udd)

• pion is π+(ud)

• kaon is K+(us)

• baryons have three 
quarks

• mesons have a quark 
and an anti-quark

• but quarks have not 
been seen

• must be confined

• and fractionally charged

• do they really exist?

_

_
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puzzles about quarks
• We need

• up u(+2/3 e)

• down d(-1/3 e)

• strange s(-1/3 e)

• proton is (uud)

• neutron is n(udd)

• pion is π+(ud)

• kaon is K+(us)

• quarks must have s=1/2

• therefore fermions

• obey exclusion principle

• but there is Δ++(uuu)

• three up-quarks in the 
same state?

• introduce color

• Δ++(uuu)
• sounds ad hoc

_

_
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puzzles about quarks
• We need

• up u(+2/3 e)

• down d(-1/3 e)

• strange s(-1/3 e)

• proton is (uud)

• neutron is n(udd)

• pion is π+(ud)

• kaon is K+(us)

• confined

• but they were seen in 
DIS experiments

• they behave as if they 
are free

• why do they appear free 
when struck at high 
energies?_

_
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November revolution

• Brookhaven: proton on a target, look for    
e+e– pairs

• SLAC: e+e– collider, look for hadrons
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Sam Ting: 丁 1976 Nobel

J
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Burton Richter 1976 Nobel

ψ
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No Nobel
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New Quark

• Very narrow resonance
• meson made of charm (c) & anti-charm (c)
• later, more mesons with “naked charm” 

with u, d, s quarks (D+, D0, Ds, ...)
• all made sense using quarks
• people were forced to accept the idea of 

quarks

_
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New Quark

• Very narrow resonance
• meson made of charm (c) & anti-charm (c)
• later, more mesons with “naked charm” 

with u, d, s quarks (D+, D0, Ds, ...)
• all made sense using quarks
• people were forced to accept the idea of 

quarks

_

6 14. Quark model

Table 14.3: qq quark-model assignments for the observed heavy mesons. Mesons in bold face are included in the Meson Summary Table.

n 2s+1!J JPC I = 0 I = 0 I = 1
2

I = 0 I = 1
2

I = 0 I = 0
cc bb cu, cd; cu, cd cs; cs bu, bd; bu, bd bs; bs bc; bc

1 1S0 0−+ ηc(1S) ηb(1S) D D±
s B B0

s B±
c

1 3S1 1−− J/ψ(1S) Υ (1S) D∗ D∗±
s B∗ B∗

s

1 1P1 1+− hc(1P ) D1(2420) Ds1(2536)±

1 3P0 0++ χc0(1P ) χb0(1P ) D∗
s0(2317)

±†

1 3P1 1++ χc1(1P ) χb1(1P ) Ds1(2460)±†

1 3P2 2++ χc2(1P ) χb2(1P ) D∗
2(2460) Ds2(2573)±

1 3D1 1−− ψ(3770)

2 1S0 0−+ ηc(2S)

2 3S1 1−− ψ(2S) Υ (2S)

2 3P0,1,2 0++, 1++, 2++ χb0,1,2(2P )

† The masses of these states are considerably smaller than most theoretical predictions. They have also been considered as four-quark states
(See the “Note on Non-qq Mesons” at the end of the Meson Listings). The Ds1(2460)± and Ds1(2536)± are mixtures of the 1+± states.

July 14, 2006 10:37
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color

• actually, color was not just a fix
• only “white” combination was not confined
• baryon=R+G+B=white
• meson＝R+anti-R=white

• maybe color is the source for force?
• color creates gluon just like the electric 

charge creates photon?
q

q

g

e−

e−

γ
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gluon’s color
• quark has three colors

• gluon acts on the three 
colors: 3x3 matrices!

• but cares only about the 
difference between colors, 
not on the overall baryon 
number=1/3

• keep the matrices traceless

• 32–1=8 gluons

• Ta= λa/2

• SU(3) gauge theory

λ1 =




0 1 0
1 0 0
0 0 0



 , λ2 =




0 −i 0
i 0 0
0 0 0



 ,

λ3 =




1 0 0
0 −1 0
0 0 0



 , λ4 =




0 0 1
0 0 0
1 0 0



 ,

λ5 =




0 0 −i
0 0 0
i 0 0



 , λ6 =




0 0 0
0 0 1
0 1 0



 ,

λ7 =




0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3




1 0 0
0 1 0
0 0 −2





q

q

g

gs Ta
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Gauge Theory
• Physics shouldn’t change 

not matter which color 
you call red, blue, or 
green

• arbitrary change of basis 
in three colors: 3x3 U

• also arbitrarily on where 
you are: U(x)

• but want to keep the 
Dirac equation 
unchanged

• need gauge field Aμ

ψ =




ψR

ψG

ψB





[iγµ(∂µ − igsAµ)−m]ψ = 0

ψ(x)→ ψ′(x) = U(x)ψ(x)

Aµ = Aa
µT a → A′

µ = UAµU† − i

gs
U∂µU†

[iγµ(∂µ − igsA
′
µ)−m]ψ′ = 0
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SU(N)

• SU(N) is a group of N x 
N matrices

• S: special (det=1)

• U: unitary

• N2-1 generators: N x N 
hermitian matrices with 
zero trace

• generators satisfy 
commutation relations 
(Lie algebra)

U = e−iωaT a

UU† = 1↔ T a† = T a

detU = e−iωaTrT a

= 1
[T a, T b] = ifabcT c

Lie groups are completely classified
SU(N), SO(N), Sp(N), G2, F4, E6, E7, E8
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asymptotic
freedom

⇐ longer distance
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David Gross

David Politzer

Frank Wilczek

2004 Nobel
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source of our weight

• up, down quarks are 
very light (2-10MeV)

• quarks move around in a 
proton of size ≈0.7fm

• this kinetic energy is 
much of the source of 
proton mass

• Eq≈c p≈ℏc/Δx         
≈0.2 GeV fm/0.7fm 
≈0.3 GeV

• 3Eq ≈1 GeV≈mp

p

u
u

d
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Spin
• production angle 

distribution well above 
the threshold:

• spin 1/2

• spin 0

θ

θ

sin2θ

(1+cosθ)2

e–

e+
γ

q

q

e e

＿
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DALI                                                                                                      
                                                                                                          

Run=15768   Evt=5906    ALEPH
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“New particle” has
spin 1/2

θ

(1+cosθ)2

θ

(1-cosθ)2

1+cos2θ

sin2θ
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DALI                                                                                                      
                                                                                                          

Run=9063    Evt=7848    ALEPH
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“New particle” has
spin 1

Corrected Data 1992

Vector Gluon, LO

Vector Gluon, LO + Fragment.

Scalar Gluon, LO

Scalar Gluon, LO + Fragment.

Z (x2-x3)/
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N
/N
3
je
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gluon has color, too

• gluon discovered and its 
spin determined at 
PETRA, DESY, Germany

• gluon can emit a gluon, 
too, because it also has 
color

• gluon self-coupling was 
discovered at TRISTAN 
experiment in Japan

• LEP determined that it 
really has to be SU(3)

e–

e+
γ

q

q

e e
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gluon has color, too

• gluon discovered and its 
spin determined at 
PETRA, DESY, Germany

• gluon can emit a gluon, 
too, because it also has 
color

• gluon self-coupling was 
discovered at TRISTAN 
experiment in Japan

• LEP determined that it 
really has to be SU(3)
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strong force

• now we believe it is 
understood theoretically

• but in order to compute 
bound state quantities, we 
need to face strong coupling

• no good approximation 
method

• put the QFT on a 
computer and do 
calculations by brute force

• lattice QCD
• months on supercomputers
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strong force

• now we believe it is 
understood theoretically

• but in order to compute 
bound state quantities, we 
need to face strong coupling

• no good approximation 
method

• put the QFT on a 
computer and do 
calculations by brute force

• lattice QCD
• months on supercomputers !
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Our “particle accelerators”

IBM Blue Gene/L (JUBL), FZ Jülich

45.8 Tflop/s peak

IBM Blue Gene/P (JUGENE), FZ Jülich

223 Tflop/s peak

IBM Blue Gene/P (Babel), IDRIS Paris

139 Tflop/s peak

And computer clusters at Uni. Wuppertal and CPT Marseille

Laurent Lellouch PASCOS 09, DESY, Hamburg, 6-10 July 2009
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PDF

probability to find a “parton” i of momentum x p
parton distribution function fi(xi)

p p collision = sum of parton-parton collision

but if you look closely (high Q2), partons split further

p xg p
xu p
xd p

0<x<1

σ =
∫ a

0
dx1

∫ 1

0
dx2fi(x1)fi(x2)σ(ij → X)
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PDF

probability to find a “parton” i of momentum x p
parton distribution function fi(xi)

p p collision = sum of parton-parton collision

but if you look closely (high Q2), partons split further

p xg p
xu p
xd p

0<x<1

DGLAP equation
dfi(x)
dQ2

=
∫ 1

x
dx′fj(x′)P (j → i + X)

σ =
∫ a

0
dx1

∫ 1

0
dx2fi(x1)fi(x2)σ(ij → X)
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q

q
g

q

q

gsTa gsTa

＿

＿ pretend this is 
the only diagram

example of 
parton-level 
cross section
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q

q
g

q

q

gsTa gsTa

＿

＿
iM = ū(k′)(−igsT

a)γµv(k)
−iδabgµν

q2
v̄(p′)(−igsT

a)γνu(p)

pretend this is 
the only diagram

example of 
parton-level 
cross section
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＿
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iM = ū(k′)(−igsT
a)γµv(k)

−iδabgµν

q2
v̄(p′)(−igsT

a)γνu(p)

pretend this is 
the only diagram

example of 
parton-level 
cross section
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Weak Interaction
Electroweak Theory
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Weak Interaction
Electroweak Theory

Beware: too many matrices!
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Fermi theory

• beta decay=decay of neutrons inside nuclei
• n→p e– νe

• coupling strength is GV=1.136 10–5 GeV–2

• vast range of nuclear lifetimes can be given 
by just a single constant!

• dimensional estimate: Γ∝GF
2 Q5、Q=Ef – Ei

_
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Universality

t1/2 (s) GV (GeV–2)
14O 70603 1.156

26Alm 6344.9 1.157
34Cl 1525.8 1.154
38Km 923.95 1.154
42Sc 679.90 1.155
46V 422.37 1.155

50Mn 283.07 1.156
54Co 193.23 1.155

J. C. Hardy and I. S. Towner, Phys. Rev. Lett. 94, 092502 (2005) 
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Fermi Scale

• GF
–1/2=300 GeV

• GF
1/2=6.7×10–17 cm

• We will be there soon!
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Universality

• Fermi tried something 
analogous to QED, but 
the force is short-ranged

• a new massive spin 1 
boson?  (W boson)

• GF=1.16637(1) 10–5 GeV–2

• GV=1.136(3) 10–5 GeV–2

• agreed with past 
accuracies

• but don’t agree with 
current accuracies

W −
µ−

νµ

e−

ν̄e

W −
d

u

e−

ν̄e

Vud

β

d

d

u

u

n

p

muon decay

beta decay
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Cabibbo 
angle
• strange quark decays into 

up quark, too
• generalized universality
• the total strength of weak 

interaction into the up 
quark

• |Vud|2+|Vus|2=1
• Vud=cos θC, Vus=sin θC

• Idea is that up quark is 
paired with a linear 
combination                
d’=d Vud+s Vus

• Now very well tested:

W −
s

u

e−

ν̄e

Vusu
_

u
_

K+

π0

W −
µ−

νµ

e−

ν̄e

W −
d

u

e−

ν̄e

Vud

β

d

d

u

u

n

p

muon decay

beta decay

strange quark decay|Vud|2 + |Vus|2 + |Vub|2 = 0.9992 ± 0.0011
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τ–θ puzzle
• τ+→π+π+π−
• each pion is parity odd
• this is parity odd particle
• θ+→π+π0

• this is parity even 
particle

• But exactly the same 
mass, same lifetime!

• C.N. Yang and T.D. Lee 
made a striking proposal 
in 1956

• parity is conserved by 
gravity, 
electromagnetism, 
strong interaction, but 
maybe not by the weak 
interaction

• If so, τ+, θ+ could be the 
same particle (K+)

• weak interaction is left-
handed, namely it acts 
only of left-handed 
quarks and leptons
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C.S. Wu’s experiment
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C.S. Wu’s experiment

Quickest Nobel prize
1956 paper and 1957 prize to Lee & Yang!
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Big shock!

• Right and Left are fundamentally different
• You can tell aliens on a distant planet which 

is right, which is left
• should not be related to why most humans 

are right-handed
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CP

• Famous experiment by 
Goldhaber, Grodzins, Sunyar

• Neutrinos are all left-handed

• This of course violates parity

• What about CP?

• All anti-neutrinos are right-
handed

• CP still appears still good!
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Goldhaber, Grodzins, Sunyar

• Neutrinos are all left-handed

• This of course violates parity

• What about CP?

• All anti-neutrinos are right-
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Glashow-Weinberg-
Salam Model

• We need many left-handed doublets

• W-boson raises or lowers within doublets
• needs generators of the types

• Looks like SU(2)!
• But then what about the third one

• not quite electric charges....

W −
s

u

e−

ν̄e

Vusu
_

u
_

K+

π0

W −
µ−

νµ

e−

ν̄e

W −
d

u

e−

ν̄e

Vud

β

d

d

u

u

n

p

muon decay

beta decay

strange quark decay

1
2
τ1 =

1
2

(
0 1
1 0

)

1
2
τ2 =

1
2

(
0 −i
i 0

)

1
2
τ3 =

1
2

(
1 0
0 −1

)

(
νe

e

)
,

(
νµ

µ

)
,

(
u

d′ = dVud + sVus

)
,

(
c

s′ = dVcd + sVcs

)
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Glashow-Weinberg-
Salam Model

• Need something weird
• need both SU(2) & U(1)
• four generators
• τ1, τ2: W± bosons for 

“charged-current weak 
interaction”

• use one combination 
½τ3+Y for photon

• then remaining 
combination is a new 
force “neutral-current 
weak interaction”

1
2
τ1 =

1
2

(
0 1
1 0

)

1
2
τ2 =

1
2

(
0 −i
i 0

)

1
2
τ3 =

1
2

(
1 0
0 −1

)

Y

Q =
1
2
τ3 + Y =

(
1
2 + Y 0

0 − 1
2 + Y

)
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Glashow-Weinberg-
Salam Model

• For lepton doublets, we need Y=–¹⁄₂, so 
that electric charges are Q=I3+Y=0 and –1

• For quark doublets, we need Y=¹⁄₆, so that 
the charges are Q=+²⁄₃ and –¹⁄₃

(
νe

e

)
,

(
νµ

µ

)
,

(
u

d′ = dVud + sVus

)
,

(
c

s′ = dVcd + sVcs

)

Q =
1
2
τ3 + Y =

(
1
2 + Y 0

0 − 1
2 + Y

)

Thursday, July 23, 2009



photon and Z

• Interaction with quarks & leptons

• introduce the weak mixing angle θW and 
write

•  Now make sure photon couples correctly

g
1
2

(
W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ −W 3
µ

)
+ g′Y Bµ

=
1
2
g

(
0

√
2 W+

µ√
2 W−

µ 0

)
+

(
1
2gW 3

µ + g′Y Bµ 0
0 − 1

2gW 3
µ + g′Y Bµ

)

(
Bµ

W 3
µ

)
=

(
cos θW − sin θW

sin θW cos θW

) (
Aµ

Zµ

)

g′Y cos θW + gI3 sin θW = e(I3 + Y ) = eQ
g′ cos θW = g sin θW = e
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photon and Z

• Now we know how Z couples

• a new force that does not change the 
charge, but couples to neutrinos!

• Gargamelle found it in 1973 in the reaction       
νμe–→ νμe–, see François’ lectures

gI3 cos θW − g′Y sin θW

=
e

sin θW cos θW

(
I3 cos2 θW − Y sin2 θW

)

= gZ(I3 −Q sin2 θW )
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Back to Fermi
• Fermi constant comes from exchange of 

W boson

• Can’t predict mW unless you know     
g=e/sin θW

• Thankfully, NC weak interaction strengths 
depend on θW

• neutrino experiments and an e d 
scattering experiment measured θW, and 
predicted mW≈80 GeV, mZ≈90 GeV W −

s

u

e−

ν̄e

Vusu
_

u
_

K+

π0

W −
µ−

νµ

e−

ν̄e

W −
d

u

e−

ν̄e

Vud

β

d

d

u

u

n

p

muon decay

beta decay

strange quark decay

e

sW cW
(I3 −Qs2

W )

GF = 1.16637(1)× 10−5GeV−2 =
g2

4
√

2m2
W
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Discovery of W and Z
• SppS at CERN produced 

W and Z (1983)
• 1984 Nobel to Rubbia 

and van der Meer
• LEP mass-produced       

e+e–→Z, e+e–→W+W–

• very precise 
measurements
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LEP discovered
the moon and TGV
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A big hole
Higgs

Thursday, July 23, 2009



Why short-ranged?

• gravity pull masses (long-
ranged)

• electromagnetism repels 
like charges (long-ranged)

• weak force pulls protons 
and electrons (short-
ranged) acts only over a 
billionth of a nanometer

• We know the energy scale:  
~0.3 TeV
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• Strangely, only left-handed particles participate in the 
weak force

• That sounds OK as long as they are moving

• but when they stop???

e
L

e
L
?e
R
?

Mystery deepens

126
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We are swimming 
in Dark Field

• There is quantum liquid 
filling our Universe

• It doesn’t disturb gravity 
or electric force

• It does disturb weak 
force and make it short-
ranged

• It slows down all 
elementary particles 
from speed of light

• otherwise no atoms!
• What is it??

E&M

gravity

e

t

e
L

e
L

e
R

e
R

t
L

t
R
t
L

t
R

!

weak

!
L
!
L !

L

1/M
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Cosmic 
Superconductor

• In a superconductor, magnetic field gets repelled (Meißner 
effect), and penetrates only over the “penetration length”

 ⇒ Magnetic field is short-ranged!

• Imagine a physicist living in a superconductor

• She finally figured:

• magnetic field must be long-ranged 

• there must be a mysterious charge-two condensate in her 
“Universe”

• But doesn’t know what the condensate is, nor why it 
condenses

• Doesn’t have enough energy (gap) to break up Cooper pairs

 That’s the stage where we are!
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Standard Model 5
CERN Summer Student Programme

July 23, 2009
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spontaneous
symmetry breaking
• electron spins are 

magnets
• in many solids, they’d like 

to line up
• but once they line up, 

they have to pick one 
particular direction

• rotational invariance of 
the system is lost by 
picking one particular 
ground state

• symmetry is broken!

130

2008 Nobel
Nambu
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spontaneous symmetry 
breaking

131

Thursday, July 23, 2009



spontaneous symmetry 
breaking

• introduce spin zero doublet 
with Y=1/2

131

H =
(

H+

H0

)
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breaking

• introduce spin zero doublet 
with Y=1/2

• V=λ|H|4–μ2|H|2
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spontaneous symmetry 
breaking

• introduce spin zero doublet 
with Y=1/2

• V=λ|H|4–μ2|H|2

• ground state:

131
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)
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spontaneous symmetry 
breaking

• introduce spin zero doublet 
with Y=1/2

• V=λ|H|4–μ2|H|2

• ground state:

• picks one particular 
orientation in SU(2), one 
particular phase in U(1)
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spontaneous symmetry 
breaking

• introduce spin zero doublet 
with Y=1/2

• V=λ|H|4–μ2|H|2

• ground state:

• picks one particular 
orientation in SU(2), one 
particular phase in U(1)

• but is symmetric under 
I3+Y=Q, electromagnetism is 
unbroken!

131

H =
(

H+

H0

)
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(

"
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)
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the top mass is 
a crucial input data

• We know the energy 
scale of the problem:
GF≈(300 GeV)–2

• the gap excitation is 
called “Higgs boson”

• Current data 
combined with the 
Standard Model 
theory predict

mH<163GeV (95%CL)

Gap Excitation
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Higgs at ATLAS
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Robust discovery
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ugly
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ugly

• V=λ|H|4–μ2|H|2
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of its quadratic divergence
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ugly

• V=λ|H|4–μ2|H|2

• Why negative mass-squred?

• Why only one scalar in the 
SM?

• Hierarchy problem because 
of its quadratic divergence

• does not appear 
fundamental, i.e. Ginzburg-
Landau vs BCS

135
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Once upon a time,
there was a hierarchy problem...
• At the end of 19th century: a “crisis” about electron

• Like charges repel: hard to keep electric charge in a 
small pack

• Electron is point-like

• At least smaller than 10–17cm
• Need a lot of energy to keep it small!

• Correction Δmec
2 > mec

2 for re < 10–13cm

• Breakdown of theory of electromagnetism
 ⇒ Can’t discuss physics below 10–13cm

∆mec2 ∼ e2

re
∼ GeV

10−17cm
re

136
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Anti-Matter Comes to Rescue
by Doubling of #Particles

• Electron creates a force 
to repel itself

• Vacuum bubble of 
matter anti-matter 
creation/annihilation

• Electron annihilates the 
positron in the bubble
⇒ only 10% of mass even 

for Planck-size re~10-33cm

e–

!

e–

137
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by Doubling of #Particles
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to repel itself
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Higgs repels itself, too

• Just like electron 
repelling itself because of 
its charge, Higgs boson 
also repels itself

• Requires a lot of energy 
to contain itself in its 
point-like size!

• Breakdown of theory of 
weak force

• Can’t get started!

  

€ 

ΔmH
2 c4 ~ c

rH

 

 
 

 

 
 

2

H H

H
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History repeats itself?

• Double #particles again 
⇒ superpartners

• “Vacuum bubbles” of 
superpartners cancel the 
energy required to 
contain Higgs boson in 
itself

• Standard Model made 
consistent with 
whatever physics at 
shorter distances

H H

H

H H

H
~

W
~

∆m2
H ∼

α
4π

m2
SUSY log(mHrH)

139

Thursday, July 23, 2009



Opening the door
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Opening the door

• Once the hierarchy problem 
solved, we can get started to 
discuss physics at shorter distances 
and earlier universe.

• It opens the door to the next level:
Hope to answer big questions

• The solution to the hierarchy 
problem itself, e.g., SUSY, provides 
additional probe to physics at short 
distances

140
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Lesson

• In general, we’d like to see physics that 
stabilizes the hierarchy between Fermi scale 
(0.3 TeV) and whatever the next high-
energy scale is

• supersymmetry, large extra dimensions, 
warped extra dimensions, little Higgs, 
composite Higgs, etc etc
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Flavor Physics
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CP
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CP

• Famous experiment by 
Goldhaber, Grodzins, Sunyar

• Neutrinos are all left-handed

• This of course violates parity

• What about CP?

• All anti-neutrinos are right-
handed

• CP still appears still good!

ν
!

ν
"

ν
"

!

"
#
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neutral kaons
• K0 and its anti-particle 

actually mix!
• What is produced as K0 

oscillates to its anti-
particle and come back

• define CP eigenstates
• Assuming CP invariance,             

KS decays into ππ,      
KL decays into πππ

d

s
_

s

d
_

W W

u, c, t

u, c, t

K0 K0
_

KS =
1√
2
(K0 + K

0)

KL =
1√
2
(K0 −K

0)
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CP fell, too

• Cronin, Fitch
• K0S→ππ (CP=+1)
• K0L→πππ (CP=–1)
• But, K0L→ππ occurs with about once in 

thousand times!  (Cronin, Fitch, 1980 
Nobel)

• With only one system, we couldn’t figure 
this out
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CP fell, too

• Cronin, Fitch
• K0S→ππ (CP=+1)
• K0L→πππ (CP=–1)
• But, K0L→ππ occurs with about once in 

thousand times!  (Cronin, Fitch, 1980 
Nobel)

• With only one system, we couldn’t figure 
this out

Brutus, you too?
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T fell also in the end

• If CP is violated, CPT theorem says T must 
also be violated in such a way that CPT is 
conserved

• Can we see time-reversal violation?
• CPLEAR@CERN showed

• microscopic arrow of time!

Γ(K0 → K0)− Γ(K0 → K
0)

Γ(K0 → K0) + Γ(K0 → K
0)

= (6.6± 1.3± 1.0)× 10−3

Thursday, July 23, 2009



Kobayashi-Maskawa
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Kobayashi-Maskawa
• In 1972 before J/ψ, they 

predicted three 
generations of quarks to 
explain origin of CP 
violation
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the third generation!

• SLAC e+e– experiment has seen 
“anomalous e mu events” (1975)

• Martin Perl: 1995 Nobel
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bottom quark

• Leon Lederman led an 
experiment at Fermilab

• looked for μ+μ– in 
hadron collisions

• a resonance miscovered 
in 1976

• finally real Upsilon   
Υ→μ+μ– discovered as 
narrow as J/ψ (1978)

• bound states of bottom 
and anti-bottom
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bottom quark

• Leon Lederman led an 
experiment at Fermilab

• looked for μ+μ– in 
hadron collisions

• a resonance miscovered 
in 1976

• finally real Upsilon   
Υ→μ+μ– discovered as 
narrow as J/ψ (1978)

• bound states of bottom 
and anti-bottom

Oops, Leon
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And (the drum roll)
the top quark!

• proton anti-proton collider Tevatron 1995
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Kobayashi-Maskawa
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Kobayashi-Maskawa
• Mathematically, what is paired with the up quark 

is d’=d Vud+s Vus+b Vub.  In general, the partners of 
u, c, t are
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Kobayashi-Maskawa
• Mathematically, what is paired with the up quark 

is d’=d Vud+s Vus+b Vub.  In general, the partners of 
u, c, t are

• 3x3 unitarity matrix has 9 parameters.  But we 
can change the phases of six quark states 
arbitrarily, subtracting 6, 9–6=3 angles.  
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1 0 0
0 c23 s23

0 −s23 c23








c13 0 s13e−iδ
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−s13eiδ 0 c13
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0 0 1
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Unitarity triangle

• Unitarity of the CKM matrix says

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





≈




0.97 0.22 0.004eiγ

−0.22 0.97 0.04
0.008 −0.04 1



 , γ ≈ 60◦

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

Vcd Vcb
*

Vtd Vtb
*

Vud Vub
*
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Exactly!

• BaBar and Belle 2002
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The Standard Model
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Three generations
Three forces

• Standard Model

• three generations of 
quarks and leptons

• electromagnetism, weak, 
and strong

• SU(3)C×SU(2)L×U(1)Y
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Renormalizable 
Quantum Field Theory
• SU(3)CxSU(2)LxU(1)Y gauge theory
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Renormalizable 
Quantum Field Theory
• SU(3)CxSU(2)LxU(1)Y gauge theory

Q d u L e B W g H G
SU(3)C 3 3 3 1 1 1 1 8 1 1
SU(2)L 2 1 1 2 1 1 3 1 2 1
U(1)Y +1/6 -1/3 +2/3 -1/2 +1 0 0 0 -1/2 0

spin -1/2 +1/2 +1/2 -1/2 +1/2 1 1 1 0 2

flavor 3 3 3 3 3 1 1 1 1 1
seen? Y Y Y Y Y Y Y Y N N
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• Gauge symmetry crucial to keep quantum field 
theories (including the SM) under control 

• Triangle diagrams:

may spoil the gauge invariance at quantum level ⇒ 
disaster

• Anomalies must all vanish for three gauge vertices 
(not for global currents, e.g. B, L)

• Sum up all standard model fermions and see if they 
indeed vanish

Gauge Anomaly
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• U(1)3

• U(1)(gravity)2

• U(1)(SU(2))2

• U(1)(SU(3))2

• (SU(3))3

• (SU(2))3, (SU(3))2SU(2), SU(3)(SU(2))2 

• SU(2)

Non-trivial connection between q & l

3 ⋅2 1
6( )
3
+ 3 − 23( )3 + 3 13( )

3
+ 2 − 12( )3 + 1( )3 = 0

3 ⋅2 1
6( ) + 3 − 23( ) + 3 13( ) + 2 − 12( ) + 1( ) = 0

3 ⋅2 1
6( ) + 2 − 12( ) = 0

3 ⋅2 1
6( ) + 3 − 23( ) + 3 13( ) = 0

#3−#3* = 2 −1−1 = 0

#2 = 3 +1 = 4 = even
0

Anomaly Cancellation
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General

• The most general renormalizable 
Lagrangian with the given particle content

L = − 1
4g′2 BµνBµν − 1

4g2
W a

µνW aµν − 1
4g2

s

Ga
µνGaµν

+Q̄ii"DQi + ūii"Dui + d̄ii"Ddi + L̄ii"DLi + ēii"Dei

+Y ij
u Q̄iujH̃ + Y ij

d Q̄idjH + Y ij
l L̄iejH + |DµH|2

−λ(H†H)2 + λv2H†H +
θ

64π2
εµνρσGa

µνGa
ρσ
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Parameters

• 3 gauge coupling constants + θQCD

• 2 parameters in the Higgs potential (GF, mH)

g’~0.36, g~0.65, gs~1.2
GF~(300 GeV)-2, mH unknown, θQCD<10-10

L = − 1
4g′2 BµνBµν − 1

4g2
W a

µνW aµν − 1
4g2

s

Ga
µνGaµν

+Q̄ii"DQi + ūii"Dui + d̄ii"Ddi + L̄ii"DLi + ēii"Dei

+Y ij
u Q̄iujH̃ + Y ij

d Q̄idjH + Y ij
l L̄iejH + |DµH|2

−λ(H†H)2 + λv2H†H +
θ

64π2
εµνρσGa

µνGa
ρσ
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Parameters

• 3x3 complex Yu
ij, Yd

ij, Yl
ij: 54 real params

• reparameterization SU(3)5xU(1)=41

54-41=13=3u+3d+3l+(3+1)CKM

L = − 1
4g′2 BµνBµν − 1

4g2
W a

µνW aµν − 1
4g2

s

Ga
µνGaµν

+Q̄ii"DQi + ūii"Dui + d̄ii"Ddi + L̄ii"DLi + ēii"Dei

+Y ij
u Q̄iujH̃ + Y ij

d Q̄idjH + Y ij
l L̄iejH + |DµH|2

−λ(H†H)2 + λv2H†H +
θ

64π2
εµνρσGa

µνGa
ρσ
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Masses and Mixings

• Choose masses and mixings as observed

VCKM !




1 λ Aλ3(ρ + iη)
−λ 1 Aλ2

−λ3(1 + ρ− iη) −Aλ2 1



 λ≈0.22
A, ρ, η≈O(1)

e µ !

u

d

c

s b

t

T
e
V

G
e
V

M
e
V

k
e
V

e
V

m
e
V

neutrinos
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Incomplete

• Now we have experimental data that say 
the Standard Model is incomplete
• neutrino mass
• dark matter
• dark energy
• absence of anti-matter in the Universe
• apparently acausal density perturbation
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Standard Model
• triumph of 20th century physics
• most successful physical 

theory ever
• describes three forces: 

• electromagnetism
• strong
• weak

• but we see problems in the 
21st century

• and it’s weird!
• There must be something 

beyond the Standard Model
• Expect big discoveries!
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• What is the Universe made of?

• How did it start?

• What is its fate?

• What are its fundamental laws?

• Why do we exist?

• founded Oct 1, 2007

Science
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• New intl research 
institute in Japan

• astrophysics

• particle theory

• particle expt

• mathematics
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• New intl research 
institute in Japan

• astrophysics

• particle theory

• particle expt

• mathematics

• official language: English

• >30% non-Japanese

• $14M/yr for 10 years

• launched Oct 1, 2007

• ~50 now

• excellent new faculty, 
young and dynamic!

• will hire about 10 more 
faculty members, ~15 
postdocs each year

• support visitors!

• new building in 2009

• intl guest house in 2009

• workshops roughly 
every other month
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For the agency/public:

• What is the Universe 
made of?

• How did it start?

• What is its fate?

• What are its fundamental 
laws?

• Why do we exist?

translation for you:

• nature of dark matter

• resolving space-like  
singularity

• w of dark energy

• string theory, unification, 
proton decay

• origin of baryon 
asymmetry

Science
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IPMU initiatives in 
expts/observations

• Vagins: let SuperK detect 
neutrinos from long past 
supernovae

• Kozlov: use KamLAND to 
see if ν=ν ?

• Suzuki/Nakahata/Martens: 
XMASS to detect dark 
matter

• Aihara/Takada/Yoshida/
Spergel: leadership in 
HyperSuprimeCam at 
Subaru for weak lensing 
survey

• also SDSS-III/BOSS
172

_
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Winter 2009 occupancy
~5900m2
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emphasis on large interaction area
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“like a European town square” ~400 m2
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emphasis on large interaction area
“like a European town square” ~400 m2

tables, chairs, blackboards, Espresso machines
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