Challenges in Infrastructure Services

CERN openlab Technical Workshop 2016 Stefan Stancu IT-CS-CE

Background image: Shutterstock

08/12/2016

Commoditization: hardware and software

- > Configuration automation
 - **Fabrics**

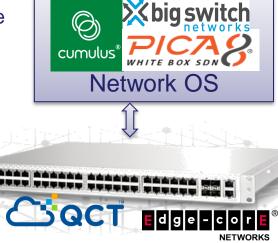
Σ

- Campus connectivity (wired/wireless).
- Security
- ΙοΤ

HW commoditization – white box switches

Network vendors offer similar hardware

- Few vendors continue manufacturing custom ASICs
- Merchant silicon, <u>Differentiator → software</u>


White box switch = bare metal device

- Runs a third party Network OS
 - Your entire network could have a common unified interface
- OCP (Open Compute Project):
 - Open HW design and SW of Facebook OCP switches

Status and outlook

- Early days, adoption rate difficult to foresee
- Reticence due to network criticality
- Vendors get involved from both directions
- Potentially very disruptive on long term

Network equivalent of Linux + x86 server

2016-12-08

SW commoditization – SDN

SDN (Software Defined Networking) areas:

- Third-party Network OS on (white box) switches
- Controllers for driving the network
 - Hybrid control
- NFV: replace dedicated network HW with software on servers

Status and outlook

- Controllers driven networks: slow adoption
 - / hybrid control should give a boost
- NFV: quick adoption (cost effective)
 - Within software performance limitations
- CERN is looking at SDN for contained portions o the network

2016-12-08

Configuration Automation

Network device configuration interfaces

- command line, vendor specific
- NETCONF / Vendor specific data models + OpenConfig
- REST / Vendor specific data models

Multi-vendor automation alternatives:

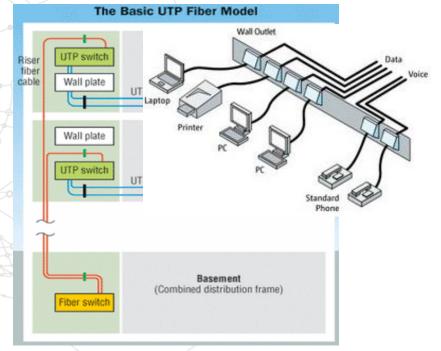
- Commercial: mostly vendor specific or vendor-focused
- No uniform configuration management platform (Puppet + Ansible)
 - //Some open-source modules for device interaction
 - / No silver bullet, two solutions
 - Home grown solution, possibly leveraging open-source modules
 - Orchestration of multiple platforms
- Need glue code to:
 - Network model database
 - Cloud orchestration platform (e.g. OpenStack)

CERN openlab

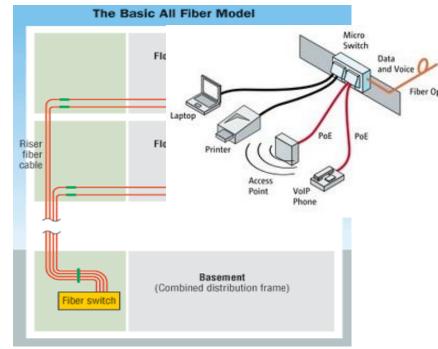
Drivers:

- Simplify management
- Provide seamless VM mobility in Data Centres

	Fabric type	Scale [end nodes]	Technology	Vendor adoptio n	Vendor Interoperability
	Distributed switch	O(100)	Port extender	All (most)	No
þ	Layer 2 Fabric	O (10k)	TRILL	most	No
			SPB	few	Yes
0	<u>Layer 3</u> Fabric	O(100k+)	BGP-EVPN VXLAN/MPLS	most	Yes (- configuration automation)


Challenges for L3 fabrics

- configuration automation for multi-vendor devices
- integration with Could orchestration platform (OpenStack.)


CERN openlab

SCN (Structured Cabled Network)

FTTO (Fibre to the office)

2016-12-08

CERN openlab

Campus connectivity: wiring

SCN (Structured Cabled Network)

- Strict lengths limitations (90 m)
- Thick cable trunks, EMI susceptibility Speed dependent cable technology

Many wiring cabinets for cable consolidation Core switches + floor switches

- Maintenance and possible cooling per floor
- ~24/48 users aggregation factor

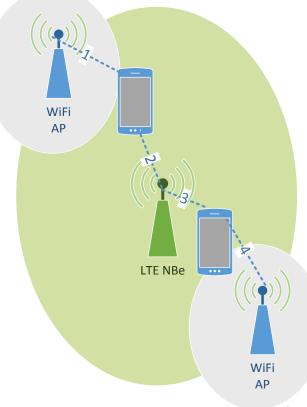
For small and mid size installations

FTTO (Fibre to the office)

- Almost no length limitations
 - 500m/MM, 10km/SM
- > No cable trunks, no EMI concerns
- > Future-proof for higher speeds
- > Few wiring cabinets needed
- Core switches + office FTTO small switches
 - Better PoE efficiency
 - Smaller user aggregation factor
- For large, spatially distributed facilities

Campus connectivity: wireless

Wireless


- Convenient, easy to use
- Suitable for most applications

Controller based WiFi solutions

- significant user experience improvement
 Simplified management
- Simplified management

Can further improve: WiFi+LTE

No WiFi coverage → LTE
 True seamless roaming
 WiFi coverage → LTE offload

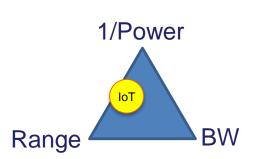
Port-based access control: 802.1X

- Suppoted in modern OSes (user authentication)
- MAC Authentication Bypass \rightarrow for "dumb" devices

Controller based access network

- Role-based
 - network access enforcement
 - QoS
- Already available in controller based WiFi solutions
 - proprietary technology
- Will become available on wired switches
 - ^ounified campus network access policy

Challenges


- Management of users and their roles / privileges
- Accounting: role-to-MAC mapping for every authentication

2016-12-08

CERN openlab

Scale – coverage:

- Wireless for most devices
- High range / low power / low bandwidth
- Licensed spectrum 3GPP technologies
 - Deterministic performance at a cost
 - Unlicensed spectrum technologies (LoRa, HaLow)
 - "Free", but risk of collapse in dense areas

IoT

Scale – addressing: OK with IPv6 or IPv4+NAT

Security:

- Access control
- Apply latest security patches ... if available...
- Compromised devices
 - high local impact (control devices)
 - DDoS attack platform

2016-12-08

CERN openlab

Stefan Stancu – CERN openlab

11 Background image: Shutterstock

Commoditization: HW and SW	 White-box switches 3rd party OS SDN Controllers.
Configuration automation	No true multi-vendor solutionGrowing open-source eco-system
Fabrics	 VM mobility across large L3 Data Centers Unified management for multi-vendor fabrics Integration with Cloud Ochestrator
Campus connectivity (wired/wireless).	 FTTO for large scale dense deployments Uniform of user experience Wired/WiFi/LTE convergence
Security	Role based access control
ΙοΤ	Coverage and InterferenceSecurity