
Understanding Performance
Activity in IT

Markus Schulz IT-DI-LCG

markus.schulz@cern.ch

Data: Outlook for HL-LHC

6/13/16 2

• Very rough estimate of a new RAW data per year of running using a

simple extrapolation of current data volume scaled by the output rates.

• To be added: derived data (ESD, AOD), simulation, user data…

P
B

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

Run 1 Run 2 Run 3 Run 4

CMS

ATLAS

ALICE

LHCb

We are here

2020 2025

CPU: Online + Offline

6/13/16 3

• Very rough estimate of new CPU requirements for online and offline

processing per year of data taking using a simple extrapolation of Run

1 performance scaled by the number of events.

0

20

40

60

80

100

120

140

160

Run 1 Run 2 Run 3 Run 4

GRID

ATLAS

CMS

LHCb

ALICE

M
H

S
0
6

Historical growth of 25%/year

Room for improvement

2020 2025

25% is very optimistic

10% more likely :-(

Understanding Performance Team (from 2016)
4FTEs (5 people)
• Software optimisation/performance tools

• IT contribution to HSF
• in collaboration with OpenLab and Techlab

• Support of existing tools
• Develop and support new tools when appropriate
• Including improvements to build and test chains to integrate performance tools
• Provide some resources for testbeds

• Investigations of overall (global) system efficiency
• Use of analytics on various monitoring and performance metrics
• Work with existing information and identify missing data

• close collaboration with experiments and sites

• Development activities for 5-10 year evolution of WLCG
• Propose & coordinate projects or prototypes to evaluate ideas for the future

• Contribute to the WLCG architecture/planning activities
• may include stimulating projects together with experiments and sites
• setting up prototypes

• Modelling of distributed infrastructure and their interaction with workflows
• Not seen as beneficial by the community
• At some rudimentary level part of the above

6/13/16 4

Current Activities
• Developing tools and procedures by working with experiment applications

• As a first step before generalization

• Trying to make sense of experiment workflow logs
• Starting with concrete experiment workflows

• Getting an overview of existing activities
• Within IT
• Within the community

• Session at the last HSF workshop

• Keeping track of them
• Started to document and summarise

• Helping to link activities
• Organising the session of performance at the HSF workshop

• With Vincenzo Innocente and Paolo Calafiura
• https://indico.cern.ch/event/496146/timetable/

• Joint meetings on analytics for workflows
• Atlas Computing Workflow Performance working group

• https://indico.cern.ch/event/587918/
• Regular meetings

• Sessions on performance at the WLCG Workshops
• https://indico.cern.ch/event/555063/sessions/207262/#20161009

6/13/16 6

https://indico.cern.ch/event/496146/timetable/
https://indico.cern.ch/event/587918/
https://indico.cern.ch/event/555063/sessions/207262/#20161009

Example Memory:
FOM-tools, x32-ABI, active usage
Nathalie Rauschmayr with Sami Kama

• Understanding how memory is used
• Tools are now part of the HSF toolset

• Observation:
• Reducing available memory for ATLAS and LHCb had not the expected impact

• Most allocated memory is rarely used

• But what object are in Swap ??

6/13/16 8

Memory

• Re-evaluation of x32-ABI
• Combines advantages x86-64 and x86 instruction sets

• Benchmarks for Alice and Geant4
• Memory reduction of up to 15%

• See presentation given at the Concurrency Forum
https://indico.cern.ch/event/468210/

• FOM
• Studies of memory allocation patterns in the time and size domain

• 60-90% of allocations live less than 100µsec
• After malloc+free+constructor call not too much time left...

• 70-95% of allocations are smaller than 64 Bytes

• Identified several reasons: wrong data structs (std::list / std::vector)

• Arguments passed by value  copy constructor

• Fragmentation?

6/13/16 9

https://indico.cern.ch/event/468210/

New look at memory and applications ...
• Allocation patterns study stimulated a lot of discussions

• Toolset to be used by developers will be made available
• Simplified functionality added to Valgrind (Summer Student with OpenLab)

• Nice Web based interface to explore the patterns

• Object lifetime gives inside into data structures and algorithm
• Raises some fundamental questions concerning performance and C++

6/13/16 10

Some application of FOM-Tools

• Several interesting problems have been spotted (and addressed)
• ATLAS excessive data read from DB

• ATLAS analysis jobs / ROOT interaction
• Lead to improvements in ROOT

• ATLAS/ROOT issue on memory usage during histogram I/O

6/13/16 11

Compiler based project
• Self-tuning code with AutoFDO

• Feedback directed optimisation for gcc from Google
• Collects performance metrics from running jobs then uses these at compile/build time

• Geant-4 detector simulation as a proof of concept
• Indication of 10-15% performance gain

• See last GDB for details:
https://indico.cern.ch/event/394788/contributions/2357347/attachments/1368686/2074705/slides.pdf

• Comparing workloads from different experiments on different CPUs
• Geant4 ATLAS sees 50% performance increase on Haswell over Ivy Bridge

• 10% difference indicated by the HS06 benchmark!
• CMS didn’t show the same increase

• Follow up tests achieved improvement of ~13% for commonly used Intel
microarchitectures prior to Haswell (for ATLAS)

• Initial proof of concept: targeted removal of some of the overhead associated with position
independent code by patching the process at runtime

• practical steps that could be adopted to get gains, two approaches tried which also showed
positive results

• Enable the linker to eliminate overhead (like CMS)

• Compile geant4 non-position independent, with x64 large code model ~10%

• Easier but less gain

6/13/16 12

https://indico.cern.ch/event/394788/contributions/2357347/attachments/1368686/2074705/slides.pdf

IPC for some jobs

• Ratio of retired instructions / unhalted clock cycles (most over whole job). Physical machine.

• Atlas simu with single process athena, HT on, affinity fixed to 1 core. No other significant load.

• Haswell was Xeon E5-2683 v3 (~3GHz); Ivy Bridge i7-3770k (~3.8GHz)

• checked Ivy Bridge also on Xeon E5-2695 v2 (~3.1GHz) running ATLAS Sim (19.2) => 0.91 IPC

• checked Atlas simu (19.2) with athenaMP (8) affinity to 4 cores on one socket => 1.58/0.97 IPC

• ATLAS sim was job 2972328065 (19.2.4.9, slc6-gcc47-opt or 20.7.8.5, slc6-gcc49-opt;
mc15_13TeV.362059.Sherpa_CT10_Znunu_Pt140_280_CFilterBVecto_fac4)

• Looked up previous HS06 results; usually ~10% higher for Haswell (per job slot/per GHz)

12/9/2016 Sandy Bridge / Haswell 15

Haswell	IPC Ivy	Bridge	IPC

CMS,	Gen 1.59 1.58

CMS,	Sim 1.47 1.18

CMS,	Digi	+	HLT 1.66 1.53

CMS,	Reco 1.55 1.4

ATLAS,	Sim(19.2.4.9) 1.43 0.92

ATLAS	Sim	(20.7.8.5) 1.42 0.96

ATLAS,	HITtoRDO 1.74

ATLAS,	RDOtoRDOTrigger 1.45

ATLAS,	RAWtoESD 1.51

Mining Experiment Logfiles

• Analysis of CPU utilization of production jobs
• Outside the T0, but will be included in the future

• Understand how experiments use their CPU resources
• Are they “efficient” (i.e. do they waste wall-clock time)?

• How can jobs be modelled in the context of a simulation of the WLCG
computing infrastructure?

• How many resources are required?

• Using data analytics techniques, understand the behavior of the
infrastructure

• Can we validate commonly used benchmarks using “real” jobs?

• Can we measure the “speed” of CPUs, or sites, by looking at different types
of jobs? Are the results compatible?

6/13/16 20

Example: ATLAS jobs in one year

By number of jobs

• MC Simulation: ≈ 60% (of

which 2/3 simul, 1/3 evgen)

• MC Reconstruction: ≈ 22% (of

which 4/5 pile)

• Analysis: ≈ 10%

• Data processing: ≈ 5% (mainly

reprocessing)

• Group production: ≈ 5%

(mainly merge)

By wall-clock time

• Analysis: ≈ 50%

• Evgen: ≈ 10%

• Merge: ≈ 7%

• Simul: ≈ 7%

• Pmerge: ≈ 5%

• Reprocessing: ≈ 4%

• Pile: ≈ 4%

21

ATLAS wall-clock per event and

CPU efficiencies

• Event generation and

simulation very CPU

intensive and efficient

• Reconstruction (pile,

reprocessing) faster

but inefficient (due to

heavy I/O)

22

Speed correlations in ATLAS

• CPU factors from
different job types are
tightly correlated

• Agreement is around 4%

• The conclusion is that all
jobs are acceptable
benchmarks if CPU time
is measured

23

Speed correlations in CMS

• Similar results

are obtained on

CMS jobs

• Speed factors

agree by ~4%

on average

• All jobs can be

used as

benchmarks

24

CMS production vs. analysis
• Analysis jobs are

relatively I/O-light

• They usually run

on small format

events

• Production jobs

can be very I/O

intensive for

certain workflows

25

ATLAS job inefficiencies (1/2)

• New analysis, just started

• Goal is to optimize ATLAS workflow

submission using as metric:

(CPU time of good jobs) / (wallclock time of all jobs)

• Examples:

• Too short jobs can be inefficient due to time

spent on initialization phase

• Too long jobs can waste a lot of wall clock time if

they fail

26

How do our workloads behave in Clouds?

• Local

• Commercial
• There are many different ones

• Data local/staging/caching/remote???
• Impact

• Costs

6/13/16 27

A. Valassi – LHCb on T-Systems Batch team meeting – 28th November 2016 28

LHCb and other VOs on T-Systems 2016*

2-Aug to 21-Sep

see my previous talk on 26-Sep

LHCb tests on a “small scale”

Left the floor to ALICE/ATLAS

21-Sep to 29-Oct: this talk!

LHCb stress test 27-Sep to 17-Oct on 3k - 3.5k cores

(thanks to ATLAS and ALICE for returning the favor ;-)

ALICE

LHCb
ATLAS

(Grafana monitoring started only on 28-Aug)

*T-Systems was available 2-Aug to 29-Oct

27-Sep to 17-Oct

https://indico.cern.ch/event/535580

A. Valassi – LHCb on T-Systems Batch team meeting – 28th November 2016 29

Updated (positive and negative) feedback
• CPU resources – very good!

– It has been easy to use these CPUs managed by IT via a batch queue
• VAC/Vcycle remains the preferred cloud model for CPUs managed by LHCb

– In particular, it was much easier to use these CPUs than those of DBCE
• Learnt the lesson that CPUs must (at least seem) to come from a single site

• No major issues from the resources themselves or their operation

– LHCb needs a dedicated CE for monitoring and configuration
• Thanks for having provided that! (LHCb does/will not use ClassAd)

– On future production cloud: would like to have MJF, as on all LHCb sites; should

also clarify WNs are responsibility of provider and agree GGUS support model

• Network – the bottleneck, but ~OK even for some data-intensive workflows

– Not a problem for MCSimulation (NB: MC is LHCb’s main use case on clouds!)

– The latest tests show it was ~OK for DataReconstruction and even DataStripping
• Provided ATLAS and ALICE are not there! academic question, not a realistic use case

• The links to some T1 sites (CNAF) were weaker than others

– Not enough for Merge jobs (not a good idea anyway, another academic question)

• Cloud storage – not interested

• Thanks for setting up this meeting, it is useful to sit together sometimes

– Also to hear the experience from the other experiments

Building Prototypes and testing Tools

• Opportunistic computing on storage servers (Orthogonal Scheduling)
• Most WLCG storage servers have low CPU utilisation
• Prototype has been build
• First measurements

• Prediction of available network bandwidth/congestions:
• Using packet loss, latency, historical data
• Analytical model
• Machine learning based predictor
• Goal: cost model

• Compiler comparison: Event generator Sherpa
• Different gcc versions
• Started to port to Intel C++ compiler

• With openLab

• Test case to use code analysis and optimisation tools

6/13/16 30

EOS/dCache/DPM

C
o

n
d

o
r

s

t

o

m

p

c

l

t

s

t

o

m

p

c

l

t

netTel - doing

the discussed

telemetrics

V
irtu

a
l M

a
c
h

in
e

Hybrid testbed

I/O load
generators
(13 hosts)

EOS head
(namespace in memory)

EOS disk server 1
+

Condor (vLHC@Home)

EOS disk server 2
+

Condor (vLHC@Home)

EOS disk server 3
+

Condor (vLHC@Home)

EOS disk server 4
+

Condor (vLHC@Home)

file I/O

• Xrdstress tool from eos-test package
is used to generate I/O loads

• EOS version is 4.1 w/ xrootd 4.5
• Condor runs payloads directly, no

virtualization involved

1Gbps
22X

22X

22X

22X

EOS performance measurements

No significant difference
in I/O numbers:

• 357 MB/s read
91 MB/s write
in hybrid mode

• 357 MB/s read
96 MB/s write
in EOS-only mode

Xrdstress from EOS was running with (top) and without (bottom)
vLHC@Home processes in the background.

vLHC@home ON

vLHC@home OFF

What about memory?

No significant difference, but memory usage is more optimal when
vLHC@Home is running (remember: free memory is wasted memory)

Pure EOS

Hybrid mode

Corner case: 100% busy I/O

Condor

OFF

Condor

ON

No I/O performance degradation

Network Analytics Activities

38

Can it work ?
• Multiplied delay and packet loss shows good correlations

for high throughput (above ~80%)
• Only clearly visible on incoming connections
• Probably because we only see the routers at CERN

• Distributions of delays have a clear tail towards higher
delays

39

Predicting Congestions with machine learning

• Inputs to the Neural Network
• Smoothed delay & packet loss
• 15 measurements from the past

(15 min)
• Average, standard deviation and

minimum over the whole
observation time

• Architecture of the NN
• Three hidden layers
• Decreasing number of neurons
• Activation function: rectified linear

unit
• Training sets for the NN

• Prediction if a connection is used
above 70% of its capacity

• Training on all connections but RAL
• Verification on RAL -> CERN

40

Predicting Congestions with machine learning

The error is given in a measure of percent,

where 0.8 means the NN is 100% above the real value

41

• Verification Results
• Mean squared error on verification set: 0.019
• Seems to be working on a connection that the

NN has never seen before
• Quite good prediction of throughput spikes
• Distribution of errors shows that the NN is likely

not overtrained
• In the error plot predictions below the cut_off

line in the previous plot were excluded

Next Steps

• Memory
• Continue to work on the tools to understand memory FOM etc.
• Simplify the use of the tools
• Identify patterns in the code that leads to many very short lived

chunks
• CPU

• Invest more in the understanding of the use of hardware counters
• Workflows

• Classification of the “Zoo”
• To generalise across experiment boundaries

• Understanding the reasons for differences
• Goal: Cost functions

• Tools
• The team is currently building expertise

• AutoFDO, Intel Compiler, Vtune
• Prototypes

• Network forecast to a product
• “Orthogonal Scheduling” testing on production systems

Additional, not necessarily

coherent material

More

6/13/16 53

What does Moore’s Law and friends offer?

• Moore’s 1st law: Number of components/chip double every 24 months

• House’s law: Performance doubles every 18 months
• Smaller struct.  higher frequency

• Kryder’s law: disk storage density doubles every 18 months

• Butters' Law of Photonics: data rate of a fibre doubles every 9 months

• Pollack’s Rule: Architecture Gain ˜ sqrt(#transistors)
• In addition to frequency etc.

• Proebsting's Law: Compilers double code efficiency every 18 years

• …......

• All this would give over 10 years a factor of “only” 50- 120
• Ignoring market, usability of new architectures, …....

546/13/16

And it is unlikely to happen…..

• Moore’s 2nd (Rock’s) law: cost of semiconductor fabs grow
exponentially

• Current generation: ˜ 16B$ per fab
• 2003: 25 state of the art producers
• 2015: 4
•  not much incentive for change
•  or competition

• Same pattern for disks
• Just worse…

• Market shifts to mobile devices

• General slowdown
• INTEL moved away from TickTock

• Now two architecture changes for one new hardware gen.

• International Technology Roadmap for Semiconductors (industry oracle)
• expected to adjust their forecasts

55

we

6/13/16

CPU utilization of

production jobs
Andrea Sciabà

56

Motivation

• Understand how experiments use their CPU
resources
• What types of jobs are (primarily) run?

• How many resources do they require?

• Are they “efficient” (i.e. do they waste wall-clock time)?

• How can jobs be modelled in the context of a simulation
of the WLCG computing infrastructure?

• Using data analytics techniques, understand the
behavior of the infrastructure
• Can we measure the “speed” of CPUs, or sites, by

looking at different types of jobs? Are the results
compatible? Can we validate commonly used
benchmarks using “real” jobs?

57

ElasticSearch

• ES is an incredibly convenient tool for data

analysis

• Both ATLAS and CMS have instances with data

from their computing systems

• Job information, data transfers, etc.

• In the process of being migrated to the CERN IT

ES service

• Interactive data analysis based on SWAN

• Aggregated data from ES is analysed using

notebooks

58

Example: ATLAS jobs in the last

year

By number of jobs

• MC Simulation: ≈ 60% (of

which 2/3 simul, 1/3 evgen)

• MC Reconstruction: ≈ 22% (of

which 4/5 pile)

• Analysis: ≈ 10%

• Data processing: ≈ 5% (mainly

reprocessing)

• Group production: ≈ 5%

(mainly merge)

By wall-clock time

• Analysis: ≈ 50%

• Evgen: ≈ 10%

• Merge: ≈ 7%

• Simul: ≈ 7%

• Pmerge: ≈ 5%

• Reprocessing: ≈ 4%

• Pile: ≈ 4%

59

ATLAS wall-clock per event and

CPU efficiencies

• Event generation and

simulation very CPU

intensive and efficient

• Reconstruction (pile,

reprocessing) faster

but inefficient (due to

heavy I/O)

60

Fitting CPU speeds

• Assume that CPU “speed” is inversely

proportional to CPU time / event

• Compare CPU time /event for similar jobs

(from same “task”) on different CPUs to

extract relative speed factors

• Repeat for different types of jobs and

compare

• The goal is to “benchmark” CPUs with real

jobs

61

Speed correlations in ATLAS

• CPU factors from
different job types are
tightly correlated

• Agreement is around 4%

• The conclusion is that all
jobs are acceptable
benchmarks if CPU time
is measured

62

Speed correlations in CMS

• Similar results

are obtained on

CMS jobs

• Speed factors

agree by ~4%

on average

• All jobs can be

used as

benchmarks

63

I/O of CMS jobs

64

IO metrics

• Using ElasticSearch it is possible to also

study I/O metrics for different types of jobs

• Input/output IO rates

• Input/output data per event and per job

• IO patterns are highly relevant for sites

• Network capacity, storage scalability, etc.

• And for WLCG

• Resource utilization, modelling

65

CMS production vs. analysis
• Analysis jobs are

relatively I/O-light

• They usually run

on small format

events

• Production jobs

can be very I/O

intensive for

certain workflows

66

Comparing production job types

• Different workflows

have hugely

different IO rates

• DIGI jobs are the

heaviest due to

reading multiple

pile-up events

67

ATLAS job inefficiencies (1/2)

• New analysis, just started

• Goal is to optimize ATLAS workflow

submission using as metric

(CPU time of good jobs) / (wallclock time of all jobs)

• Examples:

• Too short jobs can be inefficient due to time

spent on initialization phase

• Too long jobs can waste a lot of wallclock time if

they fail

68

ATLAS job inefficiencies (2/2)

• Measure job failure

probability as a function

of its duration

• By job type, by failure

mode

• Estimate ideal site

performance from data

Fraction of failed jobs as a

function of their duration

69

Instruction rate with Ivy Bridge vs

Haswell for some common jobs

20.10.16 Sandy Bridge / Haswell 70

David Smith on behalf of IT-DI-LCG, UP team.

20 Oct 2016, ATLAS computing workflow performance meeting

Introduction

• Get some insight about how the job’s code is

interacting with the CPU while running by

looking at Instructions per Cycle (IPC)

• This is not our usual performance measure,

but I hope this may let one more easily see

how the cpu pipeline is handling the code,

and to some extent compare

microarchitectures

12/9/2016 Sandy Bridge / Haswell 71

IPC for some jobs

• Ratio of retired instructions / unhalted clock cycles (most over whole job). Physical machine.

• Atlas simu with single process athena, HT on, affinity fixed to 1 core. No other significant load.

• Haswell was Xeon E5-2683 v3 (~3GHz); Ivy Bridge i7-3770k (~3.8GHz)

• checked Ivy Bridge also on Xeon E5-2695 v2 (~3.1GHz) running ATLAS Sim (19.2) => 0.91 IPC

• checked Atlas simu (19.2) with athenaMP (8) affinity to 4 cores on one socket => 1.58/0.97 IPC

• ATLAS sim was job 2972328065 (19.2.4.9, slc6-gcc47-opt or 20.7.8.5, slc6-gcc49-opt;
mc15_13TeV.362059.Sherpa_CT10_Znunu_Pt140_280_CFilterBVecto_fac4)

• Looked up previous HS06 results; usually ~10% higher for Haswell (per job slot/per GHz)

12/9/2016 Sandy Bridge / Haswell 72

Which microarchitectures are used?

• The above are usually classed as the intel
microarchitectures: e.g. Ivy Bridge is the die shrink version
of SB, and is classed as SB microarch.

• This is the last 90 days of ATLAS jobs, raw data from
elastic search (thanks Andrea)

• Used wall clock time per cpu type, with classification
based on type string, weighted by quoted cpu freq, and a
rough weighting of x1.5 for Intel Core, as that microarch.
has no hyper threading

12/9/2016 Sandy Bridge / Haswell 73

ATLAS simulation

• Both CMS and ATLAS simulation showed
larger difference in IPC between Ivy Bridge
& Haswell than other types of job

• Looking over related work, e.g. ‘MJF vs
simulation in LHCb’ (Philippe C.) may have also
been seen results consistent with this (but not
yet discussed with them)

• An LHCb benchmark was found to show large SB
vs HW difference but it was concluded that was
attributable to reduced branch misprediction rate

• Believe it’s not the case here

12/9/2016 Sandy Bridge / Haswell 74

Activity
• Did some measurements of the ATLAS simulation using

PMU counters and Last Branch Record facility
• e.g. intel’s top-down classification

• Appears frontend latency bound

• Branch misprediction is lower on haswell, but assuming
standard 20 cycles per miss this is far from accounting for IPC
difference

• Estimated basic block counts & code footprint using LBR

• But won’t go into these details more now (don’t want to get lost
in details)

• Noticed that CMS’s simulation showed smaller difference
• CMS’s pluginSimulation.so contains the geant4 routines and

was linked with g4 static archive libs -Wl,--exclude-libs,ALL
• One effect of this is non-virtual method calls in G4 avoid the

overhead of going via the PLT => avoids one indirect jmp per
function call

12/9/2016 Sandy Bridge / Haswell 75

Activity

• Haven’t tried recompiling ATLAS SW and G4
in that way but
• modified ld-linux-x86-64.so.2, the dynamic linker

from glibc, to patch up some of the PLT call sites
(where this could be inferred from return
address on stack) in the code during runtime
binding to call the function directly

• Sampling IPC after the patch-up (after 1st event
of job) this apparently improved the IPC on Ivy
Bridge to 1.09 (about 13-18% increase
depending on ref version). However little change
on HW.

12/9/2016 Sandy Bridge / Haswell 76

Possibilities for further study
• Appears 13% gain is certainly possible for simu on Ivy Bridge

(maybe more if a similar approach to CMS is feasible). However
probably only on SB microarch. (and maybe earlier). Plan:
• Decide if it’s worth it (check impact on Nehalem?) in consultation with

atlas simu group. Probably would want to go route of changing the
build rather than patching!

• Reasonable to query cost of doing so (change lib packaging maybe;
re-validate after changes): little impact with HW (and the fraction of
worker nodes with HW microarchitecture or later will grow)

• Could try to identify the cause of difference in simulation IPC
between SB and HW in more detail
• Interesting, but not certain if there will be concrete gains beyond

possible plt changes for atlas simu.

• May involve parts of the pipeline where I think exact operation is not
disclosed. (e.g. the BPU, frontend steering or instruction prefetch).

• Investigate behavior of IPC as other cores on the CPU are
loaded?

12/9/2016 Sandy Bridge / Haswell 77

Some general i/o measurements

and some interpretation

12/9/2016 IO 78

David Smith on behalf of IT-DI-LCG, UP team.
25 May 2016, ROOT I/O Workshop meeting

Scope

• This is ongoing work

• What is shown is not supposed to be a

recommendation or conclusion

• Some unanswered questions

• Not specifically a ROOT I/O study

12/9/2016 IO 79

Overview

• Background, rational

• Type of workload (job)

• Description of hardware and VM
environment

• Examples of measured quantities

• Features of comparative runs

• Examples of selected plots from the
comparison runs

• Interpretation and open questions

12/9/2016 IO 80

CERN-P1_MCORE (atlas site)

• Initially got involved when there was a problem
on CERN-P1_MCORE a cluster run as an atlas
site on some of the HLT nodes at point 1
• Failures had been noticed when starting to accept

pile jobs to the site, in addition to previous simu ones

• An problem was identified which was causing
filesystem corruption in the VMs.

• After workaround, some issues still noticed
• Dashboard reported lower efficiency compared to

CERN-PROD_MCORE for some job types

• Few percent of jobs failing with lost heartbeat

• Sometimes the HLT fabric monitoring goes to alarm
because of high io wait

12/9/2016 IO 81

Example monitoring plot

12/9/2016 IO 82

(plot kindly provided by my ATLAS colleague, shown for illustration only)

Job performance

• The pile jobs were thought involved:

• The simu jobs show good performance

• The pile jobs known to have to need read more
data during their run; more concerned with i/o
effects

• Decided to collect some machine level i/o
measurements to gain some insight into
what has happening for the job

• And as a side effect get experience of how these
measurements could be treated (e.g. if
measurements are routinely collected)

12/9/2016 IO 83

Monitor machine during a job

• Idea was to repeatedly rerun an instance of a pile
job (digi, trigger, reco): AthenaMP (8 processes)
• Data is read or written locally (stage in or out not done,

for these tests data already staged)

• HLT node has these features
• 7200 rpm, sata, 250GB disk (WD2502ABYS)

• 24 GiB ram

• 2 x Xeon E5540 base freq 2.53GHz (8 cores, x 2 with
SMT)

• When used as CERN-P1_MCORE
• Runs virtual machine (qemu)

• 16 vcpu; CERN VM 3.5.1 (now 3.6.x); disk image is QCOW2

• About 22 GiB available memory; swap configured

• Two condor job slots per machine

12/9/2016 IO 84

Collecting information

• Mostly from vmstat, iostat and uptime
• In some cases also collected from the host as well

as the guest

• Also took some strace samples from one
AthenaMP process for extra information

• Number of “runs” of the job to compare, varying
• 1 or two concurrent instances

• Running 1 instance either with limited memory
(~10GiB) or less limited (~22Gb)

• block device (containing the data) readahead

• One set from a test machine with an SSD, the rest
from one of the ATLAS HLT VMs.

12/9/2016 IO 85

Basic features of the job

• Job consists of several steps, 3 of which are

AthenaMP jobs (running with 8 processes)

• With some steps in between, some are single

process steps

• Will now run through some of the typical

distributions for an initial trial job the job

• On an physical machine, with SSD. Different

type of processor from the HLT; aim was to see

the features and introduce the measured values

12/9/2016 IO 86

12/9/2016 IO 87

12/9/2016 IO 88

12/9/2016 IO 89

12/9/2016 IO 90

Features of the trial runs

• Block device readahead may have benefit, but
increases amount of data read

• Restricting memory decreases throughput

• Running the job twice concurrently does not greatly
increase throughput compared to memory limited
single instance
• Possibilities for this may include: i/o limit to disk,

additional i/o load from swap and reduced page-cache,
other non-disk i/o condition reducing throughput of job

12/9/2016 IO 91

Features of the trial runs

• Considering: run 2, 3 & 5 as nominal single job,

restricted memory single job and two

concurrent jobs. Sequential changes in elapsed

time between these runs, for certain stages:

12/9/2016 IO 92

• (2 concurrent means double number of events: identical jobs,
started at the same time, stages are considered to overlap)

Swap/page-cache: run 2 (1 job)

12/9/2016 IO 93

Swap: Run 3 (1 job restr. mem)

12/9/2016 IO 94

Swap: run 5 (2 jobs)

12/9/2016 IO 95

CPU statistics: run 2,3,5

12/9/2016 IO 96

observations and open questions

• The larger fractional change in walltime appears
when memory is restricted for trig, reco stage

• Digi stage appears to closer to the i/o limit
• Two concurrent jobs have approx. the same overall

throughput for this stage as a single, memory limited one

• Increase in estimated data read during digi stage
with restricted memory not understood
• The I/O does also includes swap data (but swapping is

limited during this stage)

• The available page-cache is smaller, but have not yet
made agreement between application level reads and the
larger estimated I/O (c.f. amount of data for run 6 + run 7)

12/9/2016 IO 97

observations and open questions

• Have been mostly using general

measurements (i.e. vmstat and iostat)

measurements

• But have been using knowledge of the payload

to characterise it

• May see what could be concluded from the

generic measurements only, without supposing

knowledge of the job. (But will probably do this

after I believe I have understood relevant

features)

12/9/2016 Document reference 98

Network Analytics
Hendrik Borras, Marian Babik

IT-CM-MM

perfSONAR Infrastructure

• perfSONAR has been widely deployed in WLCG

• 249 active instances, deployed at 120 sites including major network hubs at ESNet, GEANT

• Measuring many different network metrics on all existing LHCOPN/LHCONE links

• Deployment and support coordinated by the WLCG Network Throughput WG

• In addition there are more than 1600 perfSONAR deployed in public

• The core motivations for this deployment was

• To ensure sites and experiments can better understand and fix networking issues

• Measure end-to-end network performance and use the measurements to single out on complex data transfer issues

• Improve overall transfer efficiency and help us determine the current status of our networks

• 100

https://twiki.cern.ch/twiki/bin/view/LCG/NetworkTransferMetrics

Network Measurement Platform

• In collaboration with OSG, we have developed an extensive network measurement platform using perfSONAR

• Tests can be centrally configured and are continuously gathered by the OSG collectors

• Service and metric-level infrastructure monitoring

• All measurements are available for subscriptions via ActiveMQ netmon broker at CERN

• What’s missing ?

• We want to run real-time analytics to detect “obvious” issues with the network as they arise

• We want to have the ability to detect which network paths perform better in case there is a choice (network cost-

matrix)

• Valuable for many different systems to decide on placement of jobs, executing transfers, etc.

• We want to automate debugging of the network issues and help find root causes in real-time

101

Network Analytics Activities

• Ilija Vukotic (Univ. of Chicago)

• has developed ELK/jupyter stack for ATLAS Analytics

• worked with Xinran Wang on anomaly detection and advanced alerting/notifications for network problems

• Also looked at detection of the anomalies based on machine learning models

• Jerrod Dixon and Brian Bockelman (UNL) exploring network analytics in CMS

• Shawn McKee (Univ. of Michigan) working on real-time root cause analysis (PuNDIT) in collaboration with ESNet

• Henryk Giemza (NCBJ), Federico Stagni integrating perfSONAR in DIRAC for LHCb

• Hendrik and Marian working on developing models for network cost-matrix - determine performance of network paths

102

https://docs.google.com/presentation/d/1OT1mq2oMzqhlgADFyqXbDIsTf5xBCoECezk7RdqrsZk/edit#slide=id.g15f4f8a21d_0_12
http://pundit.gatech.edu/

Network Cost Matrix

• We want to have the ability to understand which network paths perform better when choices are available.

• So how do we determine network path performance ?

• Network throughput measurements

• Challenging to do right in a distributed environment - iperf3, nuttcp with perfSONAR likely the best, but difficult to run full

mesh tests at high frequencies

• Throughputs already reported by various different data management systems, but it’s very challenging to determine what

fraction of it is real network performance

• Router utilizations/Flow

• Not end-to-end - many issues can be hidden in the passive equipment (switches) which are not accounted, also it depends

on the actual implementation in the router (bugs)

• Very challenging in a federated environment - too many virtualization layers, each NRENs has its own approach

103

Approach
• Can we determine link utilization from network metrics that can be measured at high frequency ?

• We measure one-way packet loss and latency @10Hz with perfSONAR

• Sufficiently precise latency/loss measurements should show network equipment “under stress” as it will need to hold

packets for a little longer in its buffers

• Thus causing spikes in latencies or packet loss if out of available buffers

• How can we validate that perfSONAR measurements are sensitive enough to detect latency and loss due to network

congestion ?

• We can compare perfSONAR data with router utilizations on networks, which have simple topology, e.g. LHC private optical

network (LHCOPN)

• Would it be possible to build models that show near real-time network usage aka network telemetry ?

104

Reasons for choosing LHCOPN:

Simple one hop connections

Accurate assumptions about the available

bandwidth

Routing is controlled and monitored by

CERN

Router utilization data provided by IT-

CS

105

Approach in practice As you can see both latency and

packet loss (yellow/green) are

quick to react once the traffic

(blue) approaches the total link

capacity (10Gbps in this case).

Similar pattern visible on all

LHCOPN connections.

Nearly no warning for starting

congestions, but good follow up

once the congestion kicks in.

This shows perfSONAR

measurements are sensitive

enough, so we have explored

ways how to couple delay and

packet loss to produce an

assumption of the link utilization.106

Does it work ?
Multiplied delay and packet loss shows good correlations

for high throughput (above ~80%)

Only clearly visible on incoming connections

Probably because we only see the routers at CERN

Distributions of delays have a clear tail towards higher

delays

107

Observations
perfSonar throughput

measurements - despite low

granularity shows it’s sensitive

to high link usage

Interesting “ghost” latency

spike seen on all incoming

connections (every weekend) -

maintenance ?

Surprisingly large drifts in

delays caused likely by non

synchronous clocks (ntp) -

limits modeling for sites that

are “too close” wrt. latency

(e.g. on campus)

108

Predicting Congestions empirically

The upper Plot shows an

example of used data. It

was smoothed via a

moving

average.

Everything that got through

Filter 1 and 2 (logical &&)

is shown in the lower plot.

Filter 1: Packet loss below

0.0001

Filter 2: Delay varying less

than one

standard deviation

Filter 1 + 2

109

Predicting Congestions empirically

The upper Plot shows an

example of used data. It

was smoothed via a

moving

average.

Everything that was not

filtered out by Filter 1 or 2

(logical or) is shown in the

lower plot.

Filter 1: Packet loss below

0.0001

Filter 2: Delay varying less

than one

standard deviation
110

Filter 1 + 2

111

Predicting Congestions with machine learning

Inputs to the Neural Network

Smoothed delay & packet loss

15 measurements from the past (15

min)

Average, standard deviation and

minimum over the whole

observation time

Architecture of the NN

Three hidden layers

Decreasing number of neurons

Activation function: rectified linear

unit

Training sets for the NN

Prediction if a connection is used

above 70% of its capacity

112

Predicting Congestions with machine learning

The error is given in a measure of percent,

where 0.8 means the NN is 100% above the real value

113

Verification Results

Mean squared error on verification set:

0.019

Seems to be working on a connection

that the NN has never seen before

Quite good prediction of throughput

spikes

Distribution of errors shows that the NN

is likely not overtrained

In the error plot predictions below the

cut_off line in the previous plot were

excluded

netTel

Implements both empirical and machine learning approach

Buffers up to 32 minutes of raw data

Uses: Keras, Theano, scikt-learn, pandas and numpy

Single threaded, under 500 MB memory usage

Publishes results to ActiveMQ, full buffers after ~40 min

Cost matrix for LHCONE (Architecture)

stompclt stompclt

netTel - doing the

discussed telemetrics

114

https://github.com/HenniOVP/netTelD
https://keras.io/
http://deeplearning.net/software/theano/
http://scikit-learn.org/
http://pandas.pydata.org/
http://www.numpy.org/

What’s next

Network telemetry based on perfSONAR now published to production netmon

brokers:

Models are easy to scale to near real-time for all existing links

Empirical model could be used as a simple binary filter for detection of anomalies

More extensive validation needed for LHCONE

ESNet provides router traffic for some LHCONE links that could be used for this

We would need to find congested links in US and compare

Exploring ways how we could use Hadoop/SPARK/DataTorrent stack for this

Follow up work will be done within WLCG Network Throughput WG
115

Cost matrix for LHCONE (Architecture)

stompclt stompclt

netTel - doing the

discussed telemetrics

V
irtu

a
l M

a
c
h

in
e

stompclt stompclt

netTel - doing the

discussed telemetrics
V

irtu
a

l M
a

c
h

in
e

