Natural neutrinos

Sun, ν_e, 60 10⁹ /cm²/s on earth
 Atmosphere, 2ν_µ/1ν_e, 100 /m²/s
 Supernova (type II), ν_µ, ν_e, ν_τ, 10⁵⁸ in 10 s

Cerenkov effect

When a charged particle propagates at a velocity > c/n *Water n=1.33 V=22000km/s* EM shock wave Light emission over a cone $\cos \theta = 1 / \beta n$

The SuperKamiokande detector

•Built under a mountain in Japan, SuperK is an immense reservoir of 50 kilotons of purified water, seen by 11000 giant phototubes.

 $\Box v_e$ from the Sun interact on electrons.

•Cerenkov effect for energies above 5 MeV.

Neutrinos from SN1987

Kamiokande 1000 tons of water Looking for... proton decay

23 february 1987

Standard solar model

REACTION	TERM. (%)	v ENERGY (MAV)
$p + p \rightarrow \frac{3}{2}H + e^{4} + r_{\mu}$	(99.96)	\$0.433
p+++p-++ ² II+v _e	0.40	2.445
$^{3}H + p \rightarrow ^{5}He + \gamma$	(109)	
¹ He + ³ He → e + 2p or	(19)	
$^{3}\text{He} + ^{4}\text{He} \rightarrow ^{2}\text{He} + r$	(15)	
2 Be+ e^{-} \rightarrow 2 Li + v_{e} 2 Li + p \rightarrow 2 a	(09)	(0.385 364 (0.985 964
Be+ y -> B+y	(0.02)	
$\label{eq:Boltzer} \begin{split} ^{2}B & \rightarrow \ ^{2}Ba^{2} + a^{2} + a_{4} \\ ^{3}Ba^{2} & \rightarrow 2\alpha \end{split}$		< 15
Barger Bere'reg	(0.0000)	×18.8

Solar neutrinos

- •Main fusion reaction
 - $4p \Rightarrow ^{4}He + 2e^{+} + 2\nu_{e} + 27$ MeV.
- •Knowing the solar luminosity, this gives a flux of 60 10⁶/cm²/s arriving on earth surface.
- •Neutrinos from the main chain have an energy limited to 430 keV, but other secondary production processes give neutrinos up to 15 MeV.

Solar neutrino spectrum

Detection with SuperK

In 1500 days, SuperK detected 22000 events while 48000 were predicted.
This is the so-called *deficit* of solar neutrinos
Already seen with Homestake and Gallex/Sage experiments.

Prehistory of solar neutrino searches

Radiochemical searches

1. Homestake chlorine experiment

615 tons of tetrachloroethylene

 $v + {}^{37}Cl \Rightarrow {}^{37}Ar + e^{-1}$

2. Gallex/Sage

15 tons of watered gallium 71 $v + {}^{71}Ga \Rightarrow {}^{71}Ge + e^{-}$

Homestake

Gallex

Solar neutrino results

- Homestake deficit
 - Seen/expected = 0.3
- Gallium deficit
 - Seen/expected = 0.6
- SuperK deficit
 - Seen/expected = 0.45
 - The deficit changes with energy!

Atmospheric neutrinos

•New deficit observed.

Production 2 ν_μ pour 1 ν_e from all horizons. A few 100 MeV energy.
SuperK distinguishes e and μ
Azimuthal distribution of ν_e OK
But for ν_μ deficit for neutrinos crossing the earth, having propagated over few 1000 km.

Do neutrinos oscillate?

• The *deficits* can be explained by a change of flavor during propagation

Case of two neutrino flavors

Old idea from B. Pontecorvo: same as in K⁰ system Weak interaction eigenstates v_e , v_μ different from mass eigenstates (propagation) v_1 , v_2

Mixing matrix unitary 2x2

 $\Box v_{e} = v_{1} \cos\theta + v_{2} \sin\theta$ $\Box v_{\mu} = -v_{1} \sin\theta + v_{2} \cos\theta$

- Probability of oscillation
 - $P = \sin^2 2\theta \, \sin^2(\pi R/L)$
- with $L = 2.5 E(GeV)/\Delta m^2(eV^2)$

 \Rightarrow Two unknows Δm^2 and $sin^2 2\theta$

Experimental hints

 Deficit of solar neutrinos
 Disappearance of v_e 2. Deficit of atmospheric neutrinos
 Diappearance of v_μ

Note: experimentally 2 complementary search methods, disappearance of initial neutrinos or appearance of new flavor not present at the source

SK result (atmospheric v_{μ})

Pontecorvo-Maki-Nakagawa-Sakata matrix

Three neutrinos. Mixing matrix, unitary 3x3 3 mixing angles + 1 phase

Solar neutrinos Atmospheric neutrinos $\theta_{12}, \Delta m_{12}^2 \\ \theta_{23}, \Delta m_{23}^2$

 $\Delta m_{31}^2 \qquad \qquad \Delta m_{21}^2$ $\cup = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\underbrace{\mathsf{atmospheric+LBL}} \qquad \mathsf{Chooz} \qquad \mathsf{solar+KamLAND}$

Remains to measure: θ_{12} , δ and absolute mass scale

Resonant oscillation in matter MSW effect

MSW effect can produce an energy spectrum distortion and flavor regeneration in Earth giving a Day-night effect. In fact, for solar v, oscillations occur inside the Sun. When observed, matter interactions define the mass hierarchy