IPv6 Security

M Babik!, J Chudoba?, A Dewhurst?, T Finnern?, T Froy?,

C Grigoras', B Hoeft’, D P Kelsey?, F Lépez Munoz’, E Martelli',
R Nandakumar®, K Ohrenberg?, F Prelz®, D Rand’, A Sciaba',

D Traynor®, U Tigerstedt' and R Wartel

L CERN, CH-1211 Genéve 23, Switzerland

2 Institute of Physics, Academy of Sciences of the Czech Republic Na Slovance 2 182 21
Prague 8, Czech Republic

3 STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX,
United Kingdom

4 Deutsches Elektronen-Synchrotron, NotkestraBe 85, D-22607 Hamburg, Germany

5 Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

6 Karlsruher Institut fiir Technologie, Hermann-von-Helmholtz-Platz 1, D-76344
Eggenstein-Leopoldshafen, Germany

™ Port d’Informacié Cientifica, Campus UAB, Edifici D, E-08193 Bellaterra, Spain

8 INFN, Sezione di Milano, via G. Celoria 16, 1-20133 Milano, Italy

9 Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
10 CSC Tieteen Tietotekniikan Keskus Oy, P.O. Box 405, FI-02101 Espoo

E-mail: david.kelsey@stfc.ac.uk, ipv6@hepix.org

Abstract. IPv4 network addresses are running out and the deployment of IPv6 networking
in many places is now well underway. Following the work of the HEPiX IPv6 Working Group,
a growing number of sites in the Worldwide Large Hadron Collider Computing Grid (WLCG)
have deployed dual-stack IPv6/IPv4 services. The aim of this is to support the use of IPv6-only
clients, i.e. worker nodes, virtual machines or containers.

The IPv6 networking protocols while they do contain features aimed at improving
security also bring new challenges for operational IT security. We have spent many decades
understanding and fixing security problems and concerns in the IPv4 world. Many WLCG IT
support teams have only just started to consider IPv6 security and they are far from ready to
follow best practice, the guidance for which is not easy to distil. The lack of maturity of IPv6
implementations together with the increased complexity of some of the protocol standards while
noting that the new protocol stack allows for many of the same attack vectors as IPv4, raise
many new issues for operational security teams.

The HEPiX IPv6 Working Group is producing guidance on best practices in this area. This
paper considers some of the security concerns for WLCG in an IPv6 world and presents the
HEPiX IPv6 working group guidance for the system administrators who manage IT services on
the WLCG distributed infrastructure, for their related site security and networking teams and
for developers and software engineers working on WLCG applications.

1. Introduction

The much-heralded exhaustion of the IPv4 networking address space is with us. The HEPiX
IPv6 Working Group [1] has been investigating the many issues feeding into the move to the use
of IPv6 in HEP in general and more specifically in WLCG. The group’s paper at CHEP2015



[?7] presented the testing and deployment of dual-stack data storage services with the aim of
soon being able to support the use of IPv6-only CPU. Since then, WLCG now has an agreed
plan to support such use of IPv6-only CPU from April 2017 (see other paper submitted to this
conference).

One of the important concerns for this migration to IPv6 relates to operational security.
The IPv6 networking protocols while they do contain features aimed at improving security also
bring new challenges. Many WLCG site support teams have only just started to consider IPv6
security and they are far from ready to be able to follow best practice.

There is much information available on IPv6 security but the fact that there are so many
documents on the topic does not make it easy for WLCG system administrators (hereafter
abbreviated to ”sysadmins”) to digest and identify the key issues. This paper is not competing
with the other information but gives pointers to these other books and papers. The IPv6 working
group has decided to produce and maintain two short checklists of the key IPv6 security issues
to be addressed as a starting point for WLCG sysadmins, for their site networking and security
teams and also for WLCG/HEP application developers and software engineers. This is based
on the experience of those sites active in the HEPiX IPv6 working group.

We have found the following to be useful sources of fuller information on IPv6 Security. These
contain much more background information and fuller exploration of the details.

(i) The Cisco book. A large and complete study of the whole subject matter.
(ii) NIST 800-119 "title”. A shorter but still complete study providing guidance.

(iii) 10 myths (Internet Society) - interesting and amusing!

(iv) SANS guidance

(v) ERNW guidance - best guidance we have found so far on IPv6 and Linux Systems.
(vi) Many IETF RFC documents - which ones do we include? RFC7381

The checklists are the IPv6 working group’s current list of issues to be considered. The
checklists are maintained on the group web site (Ref). We welcome feedback from sites and
developers on the contents of these lists according to their experiences during the transition.
Updates and additions will be made as required.

This paper is organised as follows. Section 2 presents a brief introduction to some of
the potential vulnerabilities and concerns related to IPv6. Section 3 contains the checklist
for sysadmins and site networking/security teams. Section 4 presents our checklist aimed at
application developers.

2. Some IPv6 security issues
This section presents some security concerns that arise from the use of IPv6 networking protocols.

One of the potential advantages claimed by supporters of IPv6 was that security was explicitly
addressed in the design. The mandatory use of IPsec, for example, seemed to be an early success
but problems related to key management mean that the mandatory support of IPsec has since
been relaxed (see section 11 RFC6434).

The introduction of any new protocol can of course introduce security problems. For IPv6,
these include the lack of maturity of the implementations which therefore are highly likely to
still contain many new vulnerabilities. The need for IPv6-compliant monitoring and tools and
the lack of education and experience of sysadmins both also cause concern. There are problems
introduced by the need to support a transition process, including the complications arising from
the use of dual-stack protocols and/or transition tunnels.

One way of categorising the IPv6 security issues is as follows: those related to the new IPv6
packet extension headers, including fragmentation and other native header fields. Secondly there
are security issues arising from the new Neighbor and Router Discovery protocols. Thirdly there



are security issues relating to IPv4 to IPv6 transition tools, tunnelling and the new IPv6 support
for mobility.
As an example some new features include:

(i) Many more ICMP message types! Cannot filter all of them (e.g. MTU discovery has to
work). Must filter some of them. RFC4890 gives advice (Ref).

(ii) New methods for autoconfiguring addresses, routers and DNS servers. This is good for the
end-systems but networking teams must do something to protect against potential attacks,
for example rogue Router Advertisements (see RFC6104).

(iii) Longer IP addresses. On first consideration, this appears to make slow brute force scans of
end-systems much more difficult but that is not always true as there is often structure to
the use of the address space.

(iv) IPv6 does not allow packet fragmentation en-route. The minimum MTU supported is 1280
bytes. But you can still hurt yourself and send small fragments if you wish.

(v) Not really a feature of IPv6 proper, but much of the network stack and application code is
not yet hardened and therefore is potentially vulnerable to attack.

(vi) Transitional technologies (e.g. tunnels) have intrinsic vulnerabilities but don’t need to be
there forever.

The bad news is that many previous security issues from the IPv4-era have also not changed.
As long as all network monitoring and administration tools are up-to-date and aware of IPv6,
many earlier attacks are still possible.

(i) Broadcasts and Multicasts are still there, with a vengeance.
(ii) Can still use IP headers for out-of-band communications.
(iii) Can still pollute Ethernet address discovery (ND instead of ARP).
(iv) Can still run a rogue DHCP server.
(v) Can still try forging and injecting packets into the local network.
)

(vi) The upper-layer protocols did not change!

3. Checklist for WLCG site system administrators and networking teams

This section contains the IPv6 security checklist for sysadmins and site networking/security
teams. This presents the key IPv6 security issues to be addressed by WLCG sites as a starting
point. More information is available in the documents referenced here or in the Introduction.

(i) Make an addressing plan

One of the most important design decisions for a site networking team creating an IPv6
deployment plan is to create a well thought out management plan for their IPv6 address
space. This needs to include consideration as to how to manage a dual-stack network. IPv6
address space (typically a /48 - default size as in RFC3177) will have been allocated to the
site by its NREN or other ISP. Consideration needs to be given to the routing and switching
design of the network. The number of subnets, the routing architecture, and the address
allocation within subnets etc. all need to be included.

See http://www.internetsociety.org/deploy360/resources/ipv6-address-planning-guidelines-
for-ipv6-address-allocation/ and https://www.ripe.net/support/training/material /TPv6-
for-LIRs-Training-Course/Preparing-an-IPv6-Addressing-Plan.pdf

(i) Decide whether to use DHCPv6 or SLAAC+DDNS
The second most important decision (and very much linked to the one above) to be made
by a site networking team is whether or not to use one of the important new features of



(iii)

(iv)

(vii)

(viii)

IPv6, i.e. the end-system use of IPv6 Stateless Address Autoconfiguration (see RFC4862).
And use of dynamic DNS. You are likely to prefer that server systems have fixed addresses
(either manual or DHCPvV6).

Ensure all security /network monitoring/logging are IPv6-capable

Important for networking teams, security teams and also end systems tools for sysadmins.
All monitoring and logging tools (commercial, open-source, home written) need to be
evaluated and tested for operation on IPv6. New longer addresses and multiple addresses
per network card. Do they work in a dual-stack environment and can they simultaneously
monitor both stacks. What about tools analysing log files - does parsing work?

Filter IPv6 packets that enter and leave your network/system

IPv4-only networks will have end systems where IPv6 is enabled by default. May cause big
security problems with IDS and Firewalls not handling IPv6 traffic correctly. If you don’t
want IPv6 best to turn it off and/or filter it at both the network and system level.

For filtering of ICMPv6 packets - see next topic.

Filter ICMPv6 messages wisely

Many ICMPv6 messages have an essential role in establishing or maintaining IPv6
communication. Some ICMPv6 messages can therefore not be blocked (unlike in IPv4).
Other types of ICMPv6 if allowed through the site firewall may lead to security issues. See
RFC 4890 for a full discussion and for advice.

Allow special-purpose headers only if needed

Extension Headers open up your end system and site to all sorts of vulnerabilities. RFC
Filter packets with inappropriate Extension Headers. Extension headers complicate the
task of firewall ACLs. The site needs to verify whether its ACLs also process extension
headers (to parse them to find the upper-layer payloads) and to block unwanted extension

headers see RFC5095 and RFC7045.

Use synchronised IPv4/v6 access rules
For dual-stack networks MUCH much better to have identical firewall rules (site and end-
system) for both stacks. Making them different can cause problems with

Deploy RA-Guard or otherwise deal with Rogue RAs

Neigbor Discovery and Router discovery are two important new features of IPv6. Opens
up to several different security problems. Rogue routers can send out false router
announcements (RAs) to persuade end systems to send packets to them for routing allowing
for lack of privacy and man in the middle attacks. Several ways of addressing this, one of
which is to deploy RA-Guard.

Do not be tempted by transition technologies

By this we mean think very carefully before deciding to use or allow the use of tunnelling
technologies. Dual-stack systems are the simplest approach. NAT64 is being used by some
WLCG sites but we do not in general recommend this unless ... problems with tunnels and
protocol translations are ...

Filter/disable IPv6-on-IPv4 tunnels

We recommend not using such tunnels (see above). So we suggest that sites should filter
or disable these.

4. Checklist for developers

When applications developed in the golden era of IPv4-only Internet face the transition to IPv6,
the brunt of the work often falls on the shoulders of developers, who often belong to a different
generation as the original authors. Figure 1 tries to visualise the extent of the changes that
the core code of any IP-capable application undergoes in the transition. In addition to the



struct hostent *resolved_name=NULL;
struct servent *resolved_serv=NULL;
struct protoent *resolved_proto=NULL;
static char *dest_host="some.ip.host", *dest_serv="ipservice";
struct sockaddr_in destination;
resolved_-host = gethostbyname(dest_host);
resolved_serv = getservbyname(dest_serv, NULL);
if (resolved host != NULL &% resolved_serv !'= NULL) {
destination.sin family = resolved_name->h_addrtype;
destination.sin_port = htons(resolved_serv->s_port);
memcpy (&destination.sin_addr, resolved_host->h_addr_list[0],
resolved_host->h_length) ;
resolved_proto = getprotobyname(resolved_serv->s_proto)
if (resolved proto != NULL) {
int fd = socket(AF_INET, SOCK_STREAM, resolved_proto->p_proto);
connect (fd, &destination, sizeof(destination));
/* Check for errors, connect, etc... */

struct addrinfo ai_req, *ai_ans, *cur_ans;
static char *dest_host="some.ip.host", *dest_serv="ipservice";
ai_req.ai_flags = 0;
ai_req.ai_family = PF_UNSPEC;
ai_req.ai_socktype = SOCK_STREAM;
ai_req.ai_protocol = 0; /* Any protocol is 0K */
if (getaddrinfo(dest_host, dest_serv, &ai_req, &ai_ans) != 0) {
for (cur.ans = ai_ans; cur.ans != NULL; cur.ans = cur_ans->ai.next) {
int fd = socket(cur_ans->ai_family, cur_ans->ai_socktype,

cur_ans->ai_protocol);
connect (fd_socket,cur_ans->ai_addr,cur_ans->ai_addrlen) ;
/* Check for errors - This loop has the ability to change the */
/* order of the getaddrinfo results! =/

Figure 1. C code snippets showing how the basic IP service resolution and connection changes
from legacy IPv4-only to a dual-stack or IPv6-only environment. This represents the zeroth-
order porting effort for much IPv4-only code. The newer structure is more terse, but the changes
are extensive enough, both syntactically and semantically, to probably trigger the refactoring of
much larger sections of code.



extensively different syntax, there is a fundamental 1 — N change here: no IP endpoint can be
satisfied with handling just one IP address (as any public IPv6 endpoint communicates via the
public and on the link-local address at least), but loops and address ordering start appearing
everywhere. We identify the following implications of this fundamental fact on developers’
practice, in rough descending order of importance:

(i) Plan for extensive testing.

The syntactic change of the core IP networking code in the IPv4—IPv6 transition is large
enough to oftentime justify the refactoring of larger portions of code. The semantic 1 — N
change may be forcing some rethiking at the design level. A possible temptation here is to
provide parallel sections of code that handle the IPv6 case only: a few other reasons why this
may not be a good idea are listed below. In any case, there is an implicit expectation that a
change that should be affecting the transport layer of the network only should cause no ripple
in the upper layers, i.e. that the perceived responsiveness, performance and reliability of
the code remain unchanged. Fxtensive stress-testing should therefore be planned on IPv6-
ported code.

(ii) Respect the sysadmin protocol preferences.
Code that binds and connects IP sockets is suddenly faced with making choices that used
to be delegated to the operating system or networking-capable libraries. Lists of addresses
may be received in a given order, but it’s now the responsibility of the socket-handling code
to iterate and re-iterate on the list, handle exceptions and possibly operate in parallel on
various entries to implement some form of *happy-eyeballs’! alghorithm. As the ordering
of both source and destination addresses established at the system level by the system
administrator? may have security implications, developers should go the extra mile to keep
that ordering even if they have to reshuffle the list for any reason. Applications should
allow users to prefer/enable either IPv4 or IPv6 via configuration, but should always honor
the system-level administrator’s choice by default.

(iii) Port all existing security measures.
Fresh new code that hasn’t been tested broadly and in the wild is per se attractive to anyone
looking for malicious exploits. Especially in the case where IPv6-specific code or processes
are developed for parallel deployment with well-proven IPv4 code, one should make sure
that any security measure, filter or wisdom that was included in the code for the IPv4 case
isn’t simply forgotten for IPv6. While it may not be immediately apparent, all constructs
that are meaningful for IPv4 have their translation or counterpart for IPv6.

References

[1] http://hepix-ipv6.web.cern.ch

[2] All Internet Engineering Task Force Requests For Comments (RFC) documents are available from
URLs such as http://www.ietf.org/rfc/rfcNNNN.txt where NNNN is the RFC number, for example
http://www.ietf.org/rfc/rfc2460.txt

[3] See for instance http://www.google.com/ipv6/statistics.html. The 10% global connectivity threshold was
crossed in January 2016.

[4] Hogg S, Vyncke E - IPv6 Security, Cisco Press 2009, ISBN-13: 978-1-58705-594-2

! See RFC6555 [2].
2 Via /etc/gai.conf, ip addrlabel or their equivalent.



