Future Software \
Requirements for S212 - HEP L

: | IR\
Neil Ernst (e RO
c N | /\: 4\ /)7,,“, ! /74 ‘ \ ’?/\\\
Senior Researcher S) 748
} .\\ §
Software Engineering Institute ST 25
Carnegie Mellon University § |
Pittsburgh, PA 15213 5 l
N i

© 2016 Carnegie Mellon University

il

Software Engineering Institute ’ Carnegie Mellon University
[Distribution Statement A] This materlal has been approved for public release and unlimited distribution.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

Architecture Tradeoff Analysis Method® and ATAM® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

TSpSM

DM-0004278

— Software Requirements for S212 - HEP
Dec 8, 2016

== Software Engineering Institute | Carnegie Mellon University ©2015 Gamegie ellon Unvrsty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

http://xkcd.com/844/

HOW TO WRITE GOOD CODE:

_ o START

PROTELT.

DO
THINGS
RIGHT OR DO

FAST _[CODE
T

DoES NO
ITWORK
YET?
ALMOST, BUT M5
BECOME A MASS
OF KLUDGES AND
SPAGHETT] CODE.
NO, AND THE
REQUIREMENTS
HAVE CHANGED .
Row IT ALL OUT) { /P g
TH J
AND START OVER.
GooD

What is “CS”

Physics has a long and storied multi-century legacy

— CS started formally post-WW?2 (see Babbage, Turing, von
Neumann as exceptions)

CMU School of CS

Robotics CS Department
- Software Research - Al
* Requirements Cybersecurity
- Architecture « Graphics
- Language Technologies * Programming Languages
- Computational Biology « Systems (Cloud, DB, networks)
Machine Learning « Theory (P/NP etc)

- Human Computer Interaction

So ftw e Requirements for S212 - HEP

— Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

What is the Software Engineering Institute

« A US federally funded research and development centre (FFRDC)
* (see also JPL, RAND, Los Alamos)

« Sponsored by Department of Defense and hosted by Carnegie
Mellon University in Pittsburgh

* Created in 1985 to respond to DoD software crisis
« Exemplar work:
« Capability Maturity Model (CMM) (spun off)
« Early work in s/w architecture (Bass, Kazman, Clements)
 Ultra large scale systems report (Northrop 06)
« Team Software Process (Watts Humphrey)
« Software Product Lines
« CERT (cybersecurity emergency response) first ‘CERT' in US

== Software Engineering Institute ‘ Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

The Requirements Evolution Problem

Requirements Engineering: acquire, analyse, model and select
requirements for system design.

Requirements Problem: given the requirements discovered, find
software components that together with domain constraints, satisfy
the requirements.

Requirements Evolution Problem: plan to satisfy requirements
we may not know we have — transfer Rumsfeld’'s “Unknown
Unknowns” into “Known Unknowns”.

— Software Requirements for S212 - HEP
Dec 8, 2016

== Software Engineering Institute | Carnegie Mellon University ©2015 Gamegie ellon Unvrsty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Figure 1. The Number of Source Lines of Code (SLOC) Has
Exploded in Avionics Software

Operational & Support
Software
25,000 [| 24,000

I

I

I

20,000 |

I

v I

T

= I

g |
3 15,000 [

< Operational Software |

£ A |

9 I

S _/ |

o 10,000 I

I

I

I

5000 [I

I

I

135 |

0 F-16ABlock1 F-16D Block 60 F-22 Raptor F-35 Lightning Il F-35 Lightning Il
(1974) (1984) (1997) (2006) (2012)

© 2015 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

“Traditional” RE

Requirements team separate and siloed, “over-the-
transom-style’” handoffs

%% Software Engineering Institute | Carnegie Mellon

[Distribution Statement A] This material has been appr

“Traditional” RE

Typically (if not ideally) done once, at inception

Requirements |-

L

Design (-

Y

Implementation

/

Verification

Maintenance

So ftw e Requirements for S212 - HEP

— Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

“Traditional” RE

Store artifacts iIn management tool

bluepriht

So ftwr e Requirements for S2I2 - HEP

— Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Pejoratively called:
Big Requirements Up Front

p— Software Requirements for S212 - HEP
Dec 8, 2016

—=— Software Engineering Institute Carnegie Mellon University ©2015 Gamegie Mellon Universiy

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

In-Ti &
Just-In-Time RE C“C“ﬁ\\)e(

assume change and react, rather than plan
RE is ongoing and continuous
lightweight and iterative

developers talk to “Product Owner”

e.g. specification by example, behavior-
driven development (BDD), feature driven

SPECIFICATION devglopment, user stories, acceptance
QRATI testing.

Understanding change

Just-in-time Is a response to this
Context: evolving and agile software development
Note that in some cases
Funders insist on documentation
Planning ahead can be done (probabilistlically)
Safety and budget allow for expensive requirements analysis

— Software Requirements for S212 - HEP
Dec 8, 2016

== Software Engineering Institute | Carnegie Mellon University ©2015 Gamegie ellon Unvrsty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Architecture And Requirements

Agile architecting, TSP
+ ACE, & Architecture

Attribute-Driven Evolution Workshop

Design & Architecture
Improvement

Workshop AADL & Views

Quality and Beyond

Attribute
Workshop &
Mission Thread
Workshop

BUSINESS
AND ARCHITECTURE SYSTEM

MISSION GOALS

AN Conformance
Architecture Tradeoff Analysis Review
Method (ATAM), System

ATAM, SoS Architecture Assurance and
Evaluation, Active Reviews for / argumentation
Intermediate Design, & Virtual

Upgrade Validation

— Software Requirements for S212 - HEP
Dec 8, 2016

== Software Engineering Institute | Carnegie Mellon University ©2015 Gamegie ellon Unvrsty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Figure 7-2 Approaches for Monitoring and Updating Strategies Based on the Level of Residual Uncertainty

L

e —

. \
¢ | ' | e
1. Aclear enough future 2. Alternative futures 3. A range of futures 4. True ambiguity
. Traditional strategic planning . Contingent road maps . Contingent road maps (if limsted . Strategic evolution panciples
and decision-making processes number of uncertainbes with - Scanning

clear resolution paths over tme) - experimenting

-~ - monitenng

. Six-regon option portfolio - committing

management framwork - supporting organizational
norms

http://www.youtube.com/watch?v=GiPe10iKQuk

Software Requirements for S212 - HEP
Dec 8, 2016

SOftware Eng i neering Institute ‘ Cal'llegie 1\1@]1011 lJ'Il_i‘yffl'Sityv © 2015 Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Cynefin (Kih-Neh-Vin)

Get these

Complex Complicated W ot

Enabling congtrainte

-3 Lo0gely coupled

Cannot gather BGoverning congtraintg

upfront probe-gense-respond Tlghﬂg Coup|ed
Emergent Practice Sente-Snayse Tetponc
; 2 Good Practice

Don’t really need
: RE here
Chaotic ObviouM
i traint . &
Creativity _l.ﬁcgzgcgﬁ;i ;am Tightly congtrained

No degreeg of freedom
gsenge-categorise-respond

Begt Practice

— G_ for S212 - HEP
prsity

= Software Eng

act-senge-respond
Novel Practice

[Distributicn Statement A] This ralerial has beein approved icrpubllc releasé and(unlimited-distribution:

Ultimate Empirical Question

|dealized RE

Diminishing RE return

\

Realrty?

SoftwareValue —,

Perception

Amount of RE —

Software Requirements for S212 - HEP

Software Engineering Institute ‘ Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Software ecosystems

Software in a ‘dissolving system’ world

Increasingly about ‘ecosystem’ and not central control. Unlikely to be many BDFLs.
HSF seems like a good start

Case study: Robot Operating System ecosystem
Central ‘groundskeepers’
Low barrier to entry
Use it if you want
(But not perfect)

In addition to technical requirements, think about the collaborative, social requirements:
- where to keep code
- versioning and dependency management
- how to set guidelines
- encourage diverse and non-traditional audiences

Software Requirements for S212 - HEP
Dec 8, 2016

== Software Engineering Institute ‘ Carnegie Mellon University ©2015 Gamegie ellon Unvrsty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Technical Debt

“a design or implementation choice that is expedient in the short
term, but sets up a technical context that can make a future
change more costly or impossible.”

Does HEP software have Technical Debt?

“Most of the current software, which defines our capabilities, was
designed 15-20 years ago: there are many software sustainability
challenges.”

Decisions are being made today that you will have to live with for
20+ years.

Can’t always “know the unknowns”, but can plan for periodic
refactoring, new requirements, and labeling shortcuts as such.

— Software Requirements for S212 - HEP
Dec 8, 2016

== Software Engineering Institute | Carnegie Mellon University ©2015 Gamegie ellon Unvrsty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

source: https://erikbern.com/2016/12/05/the-half-life-of-code.html

Software Will Not Go Away

16 1e7

Code added in 2005
Code added in 2006
Code added in 2007
Code added in 2008
Code added in 2009
Code added in 2010
Code added in 2011
Code added in 2012
Code added in 2013
Code added in 2014
Code added in 2015
Code added in 2016

14

1.2

1.0

ponnpnEnnnm

0.8

Lines of code

0.6

0.4

0.2

0.0

2007 2009 2011 2013 2015

Linux Kernel, additions by year

Software Requirements for S212 - HEP

Al Dec 8, 2016

Software Engineering Institute ‘ Carnegie Mellon University ©.2015 Carmegie Mellon Universty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Capabilities

Tech Capabilities

Software System Capabilities

Software Requirements for S212 - HEP
Dec 8, 2016

Software Eng i neering Institute Carnegie Mellon UIliVGl‘Sity ©2015 Camegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Fundamental Constraint

* When system go-live happens in 10 years, you WILL be running
on outdated software and hardware

« Tech cycle is always faster than system dev. cycle
(exceptions: FB, Twitter, Amazon)

« What percentage of software is ‘owned’ vs outsourced
« Many organizations refuse to believe this! (we are not all FB)

— Software Requirements for S212 - HEP
Dec 8, 2016

== Software Engineering Institute | Carnegie Mellon University ©2015 Gamegie ellon Unvrsty

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

Future-Proofing Approaches

* Modularize for evolution.
 Tradeoff: integration risk.

Modularize for release.
 Tradeoff: duplication

Abstract for architecture and for release.
» Tradeoff: leaky abstractions

Defer decisions until Last Responsible Moment. lterate and
Prototype ‘Just-in-time’.

 Tradeoff: schedule impact, duplicated work

Evaluate architecture approach regularly with business goal
scenarios.

 Tradeoff: cost, process buy-in.

@neilernst - nernst@sei.cmu.edu

So ftw e Requirements for S212 - HEP

%% Software Engineering Institute ‘ Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.

