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http://xkcd.com/844/
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What is “CS”

Physics has a long and storied multi-century legacy

— CS started formally post-WW?2 (see Babbage, Turing, von
Neumann as exceptions)

CMU School of CS

Robotics CS Department
- Software Research - Al
* Requirements  Cybersecurity
- Architecture « Graphics
- Language Technologies * Programming Languages
- Computational Biology « Systems (Cloud, DB, networks)
Machine Learning « Theory (P/NP etc)

- Human Computer Interaction
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What is the Software Engineering Institute

« A US federally funded research and development centre (FFRDC)
* (see also JPL, RAND, Los Alamos)

« Sponsored by Department of Defense and hosted by Carnegie
Mellon University in Pittsburgh

* Created in 1985 to respond to DoD software crisis
« Exemplar work:
« Capability Maturity Model (CMM) (spun off)
« Early work in s/w architecture (Bass, Kazman, Clements)
 Ultra large scale systems report (Northrop 06)
« Team Software Process (Watts Humphrey)
« Software Product Lines
« CERT (cybersecurity emergency response) first ‘CERT' in US
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The Requirements Evolution Problem

Requirements Engineering: acquire, analyse, model and select
requirements for system design.

Requirements Problem: given the requirements discovered, find
software components that together with domain constraints, satisfy
the requirements.

Requirements Evolution Problem: plan to satisfy requirements
we may not know we have — transfer Rumsfeld’'s “Unknown
Unknowns” into “Known Unknowns”.
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Figure 1. The Number of Source Lines of Code (SLOC) Has
Exploded in Avionics Software
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“Traditional” RE

Requirements team separate and siloed, “over-the-
transom-style’” handoffs
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“Traditional” RE

Typically (if not ideally) done once, at inception

Requirements |-

L

Design (-

Y

Implementation

/

Verification

Maintenance
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“Traditional” RE

Store artifacts iIn management tool

bluepriht

So ftwr e Requirements for S2I2 - HEP

— Software Engineering Institute | Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.



Pejoratively called:
Big Requirements Up Front
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In-Ti &
Just-In-Time RE C“C“ﬁ\\)e(

assume change and react, rather than plan
RE is ongoing and continuous
lightweight and iterative

developers talk to “Product Owner”

e.g. specification by example, behavior-
driven development (BDD), feature driven

SPECIFICATION devglopment, user stories, acceptance
QRATI testing.




Understanding change

Just-in-time Is a response to this
Context: evolving and agile software development
Note that in some cases
Funders insist on documentation
Planning ahead can be done (probabilistlically)
Safety and budget allow for expensive requirements analysis
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Architecture And Requirements

Agile architecting, TSP
+ ACE, & Architecture

Attribute-Driven Evolution Workshop

Design & Architecture
Improvement

Workshop AADL & Views

Quality and Beyond

Attribute
Workshop &
Mission Thread
Workshop

BUSINESS
AND ARCHITECTURE SYSTEM

MISSION GOALS

AN Conformance
Architecture Tradeoff Analysis Review
Method (ATAM), System

ATAM, SoS Architecture Assurance and
Evaluation, Active Reviews for / argumentation
Intermediate Design, & Virtual

Upgrade Validation
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Figure 7-2 Approaches for Monitoring and Updating Strategies Based on the Level of Residual Uncertainty
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Cynefin (Kih-Neh-Vin)
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Ultimate Empirical Question

|dealized RE

Diminishing RE return

\

Realrty?

SoftwareValue —,

Perception

Amount of RE —
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Software ecosystems

Software in a ‘dissolving system’ world

Increasingly about ‘ecosystem’ and not central control. Unlikely to be many BDFLs.
HSF seems like a good start

Case study: Robot Operating System ecosystem
Central ‘groundskeepers’
Low barrier to entry
Use it if you want
(But not perfect)

In addition to technical requirements, think about the collaborative, social requirements:
- where to keep code
- versioning and dependency management
- how to set guidelines
- encourage diverse and non-traditional audiences
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Technical Debt

“a design or implementation choice that is expedient in the short
term, but sets up a technical context that can make a future
change more costly or impossible.”

Does HEP software have Technical Debt?

“Most of the current software, which defines our capabilities, was
designed 15-20 years ago: there are many software sustainability
challenges.”

Decisions are being made today that you will have to live with for
20+ years.

Can’t always “know the unknowns”, but can plan for periodic
refactoring, new requirements, and labeling shortcuts as such.
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source: https://erikbern.com/2016/12/05/the-half-life-of-code.html

Software Will Not Go Away
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Capabilities

Tech Capabilities

Software System Capabilities
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Fundamental Constraint

* When system go-live happens in 10 years, you WILL be running
on outdated software and hardware

« Tech cycle is always faster than system dev. cycle
(exceptions: FB, Twitter, Amazon)

« What percentage of software is ‘owned’ vs outsourced
« Many organizations refuse to believe this! (we are not all FB)
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Future-Proofing Approaches

* Modularize for evolution.
 Tradeoff: integration risk.

Modularize for release.
 Tradeoff: duplication

Abstract for architecture and for release.
» Tradeoff: leaky abstractions

Defer decisions until Last Responsible Moment. lterate and
Prototype ‘Just-in-time’.

 Tradeoff: schedule impact, duplicated work

Evaluate architecture approach regularly with business goal
scenarios.

 Tradeoff: cost, process buy-in.

@neilernst - nernst@sei.cmu.edu

So ftw e Requirements for S212 - HEP

%% Software Engineering Institute ‘ Carnegie Mellon University

[Distribution Statement A] This material has been approved for public release and unlimited distribution.



